2021-2022学年浙教版初中数学七年级下册第四章因式分解定向训练练习题(精选).docx

上传人:知****量 文档编号:28172841 上传时间:2022-07-26 格式:DOCX 页数:19 大小:290.93KB
返回 下载 相关 举报
2021-2022学年浙教版初中数学七年级下册第四章因式分解定向训练练习题(精选).docx_第1页
第1页 / 共19页
2021-2022学年浙教版初中数学七年级下册第四章因式分解定向训练练习题(精选).docx_第2页
第2页 / 共19页
点击查看更多>>
资源描述

《2021-2022学年浙教版初中数学七年级下册第四章因式分解定向训练练习题(精选).docx》由会员分享,可在线阅读,更多相关《2021-2022学年浙教版初中数学七年级下册第四章因式分解定向训练练习题(精选).docx(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、章节同步练习2022年浙教版初中数学 七年级下册知识点习题定向攻克含答案及详细解析第四章 因式分解浙教版初中数学七年级下册第四章因式分解定向训练(2021-2022学年 考试时间:90分钟,总分100分)班级:_ 姓名:_ 总分:_题号一二三得分一、单选题(15小题,每小题3分,共计45分)1、已知,则的值是( )A.6B.6C.1D.12、多项式的公因式是()A.x2y3B.x4y5C.4x4y5D.4x2y33、下列四个式子从左到右的变形是因式分解的为()A.(xy)(xy)y2x2B.a2+2ab+b21(a+b)21C.x481y4(x2+9y2)(x+3y)(x3y)D.(a2+2a

2、)28(a2+2a)+12(a2+2a)(a2+2a8)+124、下列因式分解正确的是()A.2p+2q+12(p+q)+1B.m24m+4(m2)2C.3p23q2(3p+3q)(pq)D.m41(m+1)(m1)5、多项式的各项的公因式是( )A.B.C.D.6、下列等式中,从左往右的变形为因式分解的是()A.a2a1a(a1)B.(ab)(a+b)a2b2C.m2m1m(m1)1D.m(ab)+n(ba)(mn)(ab)7、下列因式分解正确的是()A.x24(x+4)(x4)B.4a28aa(4a8)C.a2+2a+2(a+1)2+1D.x22x+1(x1)28、下列分解因式中,x2+2

3、xy+x=x(x+2y);x2+4x+4=(x+2)2;x2+y2=(x+y)(xy).正确的个数为()A.3B.2C.1D.09、下列各式从左边到右边的变形,是因式分解且分解正确的是 ( )A.(a+1)(a-1)=a2-1B.ab+ac+1=a(b+c)+1C. a2-2a-3=(a-1)(a-3)D.a2-8a+16=(a-4)210、下列因式分解正确的是( )A.3p2-3q2=(3p+3q)(p-q)B.m4-1=(m2+1)(m2-1)C.2p+2q+1=2(p+q)+1D.m2-4m+4=(m-2)211、把代数式ax28ax+16a分解因式,下列结果中正确的是()A.a(x+4

4、)2B.a(x4)2C.a(x8)2D.a(x+4)(x4)12、多项式x2y(ab)y(ba)提公因式后,余下的部分是()A.x2+1B.x+1C.x21D.x2y+y13、下列关于2300+(2)301的计算结果正确的是()A.2300+(2)301230023012300223002300B.2300+(2)3012300230121C.2300+(2)301(2)300+(2)301(2)601D.2300+(2)3012300+2301260114、下列各式由左到右的变形中,属于因式分解的是( ).A.B.C.D.15、在下列从左到右的变形中,不是因式分解的是()A.x2xx(x1)

5、B.x2+3x1x(x+3)1C.x2y2(x+y)(xy)D.x2+2x+1(x+1)2二、填空题(10小题,每小题4分,共计40分)1、若多项式可分解因式,则_,_2、若,则_3、因式分解:m2+2m_4、因式分解:_5、分解因式:xy3x+y3_6、边长为a、b的长方形,它的周长为14,面积为10,则的值为_7、若,则a2bab2_8、分解因式:9a2+b2_9、已知x2y221,xy3,则x+y_10、分解因式_三、解答题(3小题,每小题5分,共计15分)1、因式分解:x316x2、分解因式:6(x+y)2+2(yx)(x+y)3、分解因式:(1)(2)-参考答案-一、单选题1、B【分

6、析】首先将 变形为,再代入计算即可.【详解】解:, ,故选:B.【点睛】本题考查提公因式法因式分解,解题关键是准确找出公因式,将原式分解因式.2、D【分析】根据公因式的意义,将原式写成含有公因式乘积的形式即可.【详解】解:因为,所以的公因式为,故选:D.【点睛】本题考查了公因式,解题的关键是理解公因式的意义是得出正确答案的前提,将各个项写成含有公因式积的形式.3、C【分析】根据因式分解的定义判断即可.把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.【详解】解:A选项,B,D选项,等号右边都不是积的形式,所以不是因式分解,不符合题意;C选项,符合因式分解的定

7、义,符合题意;故选:C.【点睛】本题考查了因式分解的定义,掌握因式分解的定义是解题的关键.4、B【分析】利用提取公因式法、平方差公式和完全平方公式法分别因式分解分析得出答案.【详解】解:A、2p+2q+1不能进行因式分解,不符合题意;B、m2-4m+4=(m-2)2,符合题意;C、3p2-3q2=3(p2-q2)=3(p+q)(p-q),不符合题意;D、m4-1=(m2+1)(m2-1)=m4-1=(m2+1)(m+1)(m-1),不符合题意;故选择:B【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.5、A【分析】公因式的定义:一个多项式中每一项都含有的相

8、同的因式,叫做这个多项式各项的公因式.由公因式的定义求解.【详解】解:这三个单项式的数字最大公因数是1,三项含有字母是a,b,其中a的最低次幂是a2,b的最低次幂是b,所以多项式的公因式是.故选A.【点睛】本题主要考查了公因式,关键是掌握确定多项式中各项的公因式,可概括为三“定”:定系数,即确定各项系数的最大公约数;定字母,即确定各项的相同字母因式(或相同多项式因式);定指数,即各项相同字母因式(或相同多项式因式)的指数的最低次幂.6、D【分析】把一个多项式化为几个整式的乘积的形式叫因式分解,根据定义对各选项进行一一分析判断即可.【详解】A. a2a1a(a1)从左往右的变形是乘积形式,但(a

9、1)不是整式,故选项A不是因式分解;B. (ab)(a+b)a2b2,从左往右的变形是多项式的乘法,故选项B不是因式分解;C. m2m1m(m1)1,从左往右的变形不是整体的积的形式,故选项C不是因式分解;D.根据因式分解的定义可知 m(ab)+n(ba)(mn)(ab)是因式分解,故选项D从左往右的变形是因式分解.故选D.【点睛】本题考查因式分解,掌握因式分解的特征从左往右的变形后各因式乘积,各因式必须为整式,各因式之间不有加减号是解题关键.7、D【分析】各式分解得到结果,即可作出判断.【详解】解:A、原式(x+2)(x2),不符合题意;B、原式4a(a2),不符合题意;C、原式不能分解,不

10、符合题意;D、原式(x1)2,符合题意.故选:D.【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.8、C【分析】直接利用提取公因式法以及公式法分别分解因式判断即可.【详解】解:x2+2xy+x=x(x+2y+1),故错误;x2+4x+4=(x+2)2,故正确;-x2+y2=(y+x)(y-x),故错误;故选:C.【点睛】本题主要考查了提取公因式法以及公式法分解因式,正确运用乘法公式是解题关键.9、D【分析】分解因式就是把一个多项式化为几个整式的积的形式.因此,要确定从左到右的变形中是否为分解因式,只需根据定义来确定.【详解】解:A、是多项式乘法,不是因式分

11、解,原变形错误,故此选项不符合题意;B、右边不是整式的积的形式,不是因式分解,原变形错误,故此选项不符合题意;C、a2-2a-3=(a+1)(a-3)分解时出现符号错误,原变形错误,故此选项不符合题意;D、符合因式分解的定义,是因式分解,原变形正确,故此选项符合题意.故选:D.【点睛】本题考查了因式分解.解题的关键是理解因式分解的定义:把一个多项式化为几个最简整式的积的形式,这种变形叫做把这个多项式因式分解,然后进行正确的因式分解.10、D【分析】利用提取公因式法、平方差公式和完全平方公式法分别因式分解分析得出答案.【详解】解:选项A:3p23q23(p2q2)3(pq)(pq),不符合题意;

12、选项B:m41(m21)(m21)m41(m21)(m1)(m1),不符合题意;选项C:2p2q1不能进行因式分解,不符合题意;选项D:m24m4(m2)2,符合题意.故选:D.【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.11、B【分析】直接提取公因式a,再利用完全平方公式分解因式即可.【详解】解:ax28ax+16aa(x28x+16)a(x4)2.故选B.【点睛】本题主要考查了分解因式,解题的关键在于能够熟练掌握分解因式的方法.12、A【详解】直接提取公因式y(ab)分解因式即可.【解答】解:x2y(ab)y(ba)x2y(ab)+y(ab)y(a

13、b)(x2+1).故选:A.【点睛】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.13、A【分析】直接利用积的乘方运算法则将原式变形,再利用提取公因式法分解因式计算得出答案.【详解】2300+(2)301230023012300223002300.故选:A.【点睛】此题主要考查了提取公因式法分解因式以及有理数的混合运算,正确将原式变形是解题关键.14、C【分析】根据因式分解是把一个多项式转化成几个整式积,可得答案.【详解】解:A、是整式的乘法,故A不符合;B、没把一个多项式转化成几个整式积,故B不符合;C、把一个多项式转化成几个整式积,故C符合;D、没把一个多项式转化成几个整式

14、积,故D不符合;故选:C.【点睛】本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式积.15、B【分析】根据因式分解的定义,逐项分析即可,因式分解指的是把一个多项式分解为几个整式的积的形式.【详解】A. x2xx(x1),是因式分解,故该选项不符合题意; B. x2+3x1x(x+3)1,不是因式分解,故该选项符合题意;C. x2y2(x+y)(xy),是因式分解,故该选项不符合题意; D. x2+2x+1(x+1)2,是因式分解,故该选项不符合题意;故选B【点睛】本题考查了因式分解的定义,掌握因式分解的定义是解题的关键.二、填空题1、64 9 【分析】利用平方差公式可得,进而可得

15、答案.【详解】解:多项式可分解因式,m=64,n=9.故答案为:64,9.【点睛】此题主要考查了因式分解,关键是掌握平方差公式:a2-b2=(a+b)(a-b).2、2022【分析】根据,得,然后局部运用因式分解的方法达到降次的目的,整体代入求解即可.【详解】故填“2022”.【点睛】本题主要考查了因式分解,善于运用因式分解的方法达到降次的目的,渗透整体代入的思想是解决本题的关键.3、【分析】根据提公因式法因式分解即可.【详解】.故答案为:.【点睛】本题考查了提公因式法因式分解,掌握提公因式法因式分解是解题的关键.4、【分析】先分组,然后根据公式法因式分解.【详解】.故答案为:.【点睛】本题考

16、查了分组分解法,公式法分解因式,掌握因式分解的方法是解题的关键.5、(y3)(x+1)【分析】直接利用分组分解法、提取公因式法分解因式得出答案.【详解】解:xy3x+y3x(y3)+(y3)(y3)(x+1).故答案为:(y3)(x+1).【点睛】本题主要考查了利用提取公因式的方法分解因式,解题的关键在于能够熟练掌握提公因式的方法分解因式.6、70【分析】直接利用长方形的周长和面积公式结合提取公因式法分解因式计算即可.【详解】解:依题意:2a+2b=14,ab=10,则a+b=7a2b+ab2=ab(a+b)=70;故答案为:70【点睛】此题主要考查了提取公因式法分解因式,正确得出a+b和ab

17、的值是解题关键.7、1【分析】直接提取公因式ab,进而分解因式,把已知数据代入得出答案.【详解】解:ab,ab2,a2bab2ab(ab)21.故答案为:1.【点睛】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.8、 (b+3a)(b-3a)【分析】原式利用平方差公式分解即可.【详解】解:-9a2+b2= b2-9a2=(b+3a)(b-3a).故答案为:(b+3a)(b-3a)【点睛】本题考查了运用平方差公式分解因式,熟练掌握平方差公式的结构特征是解本题的关键.9、7【分析】根据平方差公式分解因式解答即可.【详解】解:x2y2(xy)(x+y)21,xy3,3(x+y)21,

18、x+y7.故答案为:7.【点睛】此题考查平方差公式分解因式,关键是根据平方差公式展开解答.10、【分析】原式提取2,再利用平方差公式分解即可.【详解】解:=2(x2-9)=2(x+3)(x-3).故答案为:2(x+3)(x-3).【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.三、解答题1、x(x+4)(x-4).【分析】原式提取x,再利用平方差公式继续分解即可.【详解】解:x316x=x(x2-16)=x(x+4)(x-4).【点睛】本题考查了提公因式与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.2、【分析】先提公因式,再根据整式的加减计算括号内的,最后再提公因数4,即可求解.【详解】解:6(x+y)2+2(yx)(x+y)【点睛】本题考查了因式分解,掌握提公因式法因式分解是解题的关键.3、(1);(2)【分析】(1)直接利用完全平方和公式进行因式分解;(2)提取公因式后,再利用平方差公式进行因式分解.【详解】解:(1)(2).【点睛】本题考查了因式分解,解题的关键是根据具体内容选择合适的公式进行因式分解.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁