《精品试题北师大版八年级数学下册第三章图形的平移与旋转综合测评练习题(无超纲).docx》由会员分享,可在线阅读,更多相关《精品试题北师大版八年级数学下册第三章图形的平移与旋转综合测评练习题(无超纲).docx(26页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、八年级数学下册第三章图形的平移与旋转综合测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列图形中,既是中心对称图形又是轴对称图形的有几个()A1个B2个C3个D4个2、下列图形中,是中心对称图形的是
2、()ABCD3、点M(2,4)先向左平移3个单位长度,再向上平移2个单位长度得到的点的坐标是()A(1,6)B(1,2)C(1,1)D(4,1)4、点P(3,1)关于原点对称的点的坐标是( )A(3,1)B(3,1)C(3,1)D(3,1)5、下列图形中,既是轴对称图形,又是中心对称图形的是( )ABCD6、下列图形中,是中心对称图形也是轴对称图形的是()ABCD7、如果存在一条直线将一个图形分割成两部分,使其中一部分图形按某个方向平移后能够与另一部分重合,那么我们把这种图形称为平移重合图形,下列图形中,不是平移重合图形的是( )ABCD8、下列图形中,是中心对称图形的是( )ABCD9、下列
3、图形中,既是轴对称图形,又是中心对称图形的是( )ABCD10、如图,在ABC中,ACB90,BAC20,将ABC绕点C顺时针旋转90得到ABC,点B的对应点B在边AC上(不与点A,C重合),则AAB的度数为()A20B25C30D45第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知点A的坐标为,O为坐标原点,连结OA,将线段OA绕点顺时针旋转90得到线段,则点的坐标为_2、在平面直角坐标系中,点P坐标为(2,3),则点P关于x轴对称的点的坐标为_;点P关于原点对称的点坐标为_3、如图,线段AB按一定的方向平移到线段CD,点A平移到点C,若AB=6cm,四边形ABD
4、C的周长为28cm,则BD=_cm4、如图,P是正方形ABCD内一点,将绕点B顺时针方向旋转,能与重合,若,则_5、若点与点关于原点对称,则(_)三、解答题(5小题,每小题10分,共计50分)1、已知ABC(ACBCAC)绕点C顺时针旋转得DEC,射线AB交直线CD于点P,交射线DE于点F(1)如图1,AFD与BCE的关系是 ;(2)如图2,当旋转角为60时,点D、点B与线段AC的中点O恰好在同一直线上,延长DO至点G,使OGOD,连接GC请写出AFD与GCD的关系,并说明理由;若ACB45,CE4,请直接写出线段GC的长度2、在RtABC中,AB=AC,BAC=90,D为BC边上一点(不与点
5、B,C重合),将线段AD绕点A逆时针旋转90得到线段AE探索:(1)连接EC,如图,试探索线段BC,CD,CE之间满足的等量关系,并证明结论;(2)如图,在四边形ABCD中,ABC=ACB=45,若BD=7,将边AD绕点A逆时针旋转90得到线段AE连接DE、CE,求线段CE的长(3)AD与CE交于点N,BD与CE交于点M,在(2)的条件下,试探究BD与CE的位置关系,并加以证明3、如图1,点O是线段AD的中点,分别以AO和DO为边在线段AD的同侧作等边三角形OAB和等边三角形OCD,连接AC和BD,相交于点E,连接BC(1)求证DOBAOC;(2)求CEB的大小;(3)如图2,OAB固定不动,
6、保持OCD的形状和大小不变,将OCD绕点O旋转(OAB和OCD不能重叠),求CEB的大小4、如图,在平面直角坐标系中,已知点A(2,2),点P是x轴上的一个动点(1)A1,A2分别是点A关于原点的对称点和关于y轴对称的点,直接写出点A1,A2的坐标,并在图中描出点A1,A2(2)求使APO为等腰三角形的点P的坐标5、如图,在66的方格纸中,每个小正方形的顶点称为格点,每个小正方形的边长均为1,A,B两点均在格点上请按要求在图,图,图中画图:(1)在图中,画等腰ABC,使AB为腰,点C在格点上(2)在图中,画面积为8的四边形ABCD,使其为中心对称图形,但不是轴对称图形,C,D两点均在格点上(3
7、)在图中,画ABC,使ACB=90,面积为5,点C在格点上-参考答案-一、单选题1、A【分析】根据轴对称图形与中心对称图形的概念求解【详解】解:第一个图形既不是轴对称图形,也不是中心对称图形,不符合题意;第二个图形是轴对称图形,不是中心对称图形,不符合题意;第三个图形是轴对称图形,不是中心对称图形,不符合题意;第四个图形既是轴对称图形,也是中心对称图形,符合题意;既是中心对称图形又是轴对称图形的只有1个,故选:A【点睛】本题主要考查了中心对称图形与轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合2、A【分析】把一个图形
8、绕某点旋转后能与自身重合,则这个图形是中心对称图形,根据中心对称图形的定义逐一判断即可.【详解】解:选项A中的图形是中心对称图形,故A符合题意;选项B中的图形不是中心对称图形,故B不符合题意;选项C中的图形不是中心对称图形,故C不符合题意;选项D中的图形不是中心对称图形,故D不符合题意;故选A【点睛】本题考查的是中心对称图形的识别,掌握中心对称图形的定义是解本题的关键.3、A【分析】直接利用平移中点的变化规律求解即可,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减【详解】,得到的点的坐标是故选:A【点睛】本题考查图形的平移变换,关键是要懂得左右移动改变点的横坐标,左减,右加;
9、上下移动改变点的纵坐标,下减,上加4、C【分析】据平面直角坐标系中任意一点P(x,y),关于原点的对称点是(x,y),然后直接作答即可【详解】解:根据中心对称的性质,可知:点P(3,1)关于原点O中心对称的点的坐标为(3,1)故选:C【点睛】本题考查关于原点对称的点坐标的关系,是需要熟记的基本问题,记忆方法可以结合平面直角坐标系的图形5、B【分析】根据轴对称图形与中心对称图形的概念求解【详解】解:A不是中心对称图形,是轴对称图形,故此选项不合题意;B是轴对称图形,也是中心对称图形,故此选项符合题意;C是轴对称图形,不是中心对称图形,故此选项不合题意;D不是轴对称图形,是中心对称图形,故此选项不
10、合题意故选:B【点睛】此题主要考查了中心对称图形与轴对称图形的概念:轴对称图形:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形;中心对称图形:在同一平面内,如果把一个图形绕某一点旋转180,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形6、C【分析】根据中心对称图形的定义旋转180后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出【详解】解:A、不是轴对称图形,是中心对称图形,故A选项不符合题意;B、是轴对称图形,不是中心对称图形,故B选项不符合题意;C、既是轴对称图形,又是中心对称图形,故C选项符合题意;D、是轴对称图形,但不是中心
11、对称图形,故D选项不符合题意故选:C【点睛】本题考查中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180后与原图重合7、D【分析】如图,平行四边形ABCD中,取BC,AD的中点E,F,连接EF,证明平行四边形是平移重合图形,即可判断A、B、C;再由找不到一条直线将圆分割成两部分,使其中一部分图形按某个方向平移后能够与另一部分重合即可判断D【详解】解:如图,平行四边形ABCD中,取BC,AD的中点E,F,连接EF则有:AF=FD,BE=EC,AB=EF=CD,四边形ABEF向右
12、平移可以与四边形EFCD重合,平行四边形ABCD是平移重合图形同理可证,正方形,长方形,也是平移重合图形,故选项A、B、C不符合题意,而找不到一条直线将圆分割成两部分,使其中一部分图形按某个方向平移后能够与另一部分重合,则圆不是平移重合图形,故D符合题意;故选D【点睛】本题考查平移图形的定义,解题的关键是理解题意,灵活运用所学知识解决问题8、B【分析】根据中心对称图形的概念,对各选项分析判断即可得解把一个图形绕某一点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形【详解】选项、均不能找到这样的一个点,使图形绕某一点旋转后与原来的图形重合,所以不是中心对称图形,选
13、项能找到这样的一个点,使图形绕某一点旋转后与原来的图形重合,所以是中心对称图形,故选:【点睛】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后与原图重合9、C【详解】解:选项A中的图形是轴对称图形,不是中心对称图形,故A不符合题意;选项B中的图形既不是轴对称图形,也不是中心对称图形,故B不符合题意;选项C中的图形既是轴对称图形,也是中心对称图形,故C符合题意;选项D中的图形不是轴对称图形,是中心对称图形,故D不符合题意;故选C【点睛】本题考查的是轴对称图形与中心对称图形的识别,轴对称图形的定义:把一个图形沿某条直线对折,直线两旁的部分能够完全重合;中心对称图形的定义:
14、把一个图形绕某点旋转后能够与自身完全重合;掌握定义是解本题的关键.10、B【分析】由旋转知ACAC,BACCAB,ACA90,从而得出ACA是等腰直角三角形,即可解决问题【详解】解:将ABC绕点C顺时针旋转90得到ABC,ACAC,BACCAB,ACA90,ACA是等腰直角三角形,CAA45,BAC20,CAB20,AAB25故选:B【点睛】本题主要考查了图形的旋转,等腰直角三角形的性质,熟练掌握图形旋转前后对应线段相等,对应角相等是解题的关键二、填空题1、(b,a)【分析】设A在第一象限,画出图分析,将线段OA绕点O按顺时针方向旋转90得OA1,如图所示根据旋转的性质,A1B1AB,OB1O
15、B综合A1所在象限确定其坐标,其它象限解法完全相同【详解】解:设A在第一象限,将线段OA绕点O按顺时针方向旋转90得OA1,如图所示A(a,b),OBa,ABb,A1B1ABb,OB1OBa,因为A1在第四象限,所以A1(b,a),A在其它象限结论也成立故答案为:(b,a),【点睛】本题考查了图形的旋转,设点A在某一象限是解题的关键2、(2,-3) (2,-3) 【分析】根据关于x轴对称点的坐标以及关于原点对称点的性质得出答案【详解】解:点P坐标为(2,3),则点P关于x轴对称的点的坐标为(2,-3);点P关于原点对称的点坐标为(2,-3)故答案为:(2,-3);(2,-3)【点睛】本题主要考
16、查了关于x轴对称点的坐标以及关于原点对称点的坐标,关键是掌握坐标的变化特点关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数;关于原点对称点的坐标特点:横坐标互为相反数、纵坐标互为相反数3、8【分析】图形平移后,AB平移到线段CD,点A平移到点C,则A和C是对应点,B和D是对应点,可得AB+BD=14,最后得出结果【详解】解:图形平移后,对应点连成的线段平行且相等,AB平移到线段CD,点A平移到点C,则A和C是对应点,B和D是对应点,AC=BD,AB=CDAC+BD+AB+CD=2AB+2BD=28,AB+BD=14,AB=6cm,BD=14-6=8cm,故答案为:8【点睛】根据平移的性质
17、,图形平移后,对应点连成的线段平行且相等,求出结果4、故答案为: 【点睛】本题考查了平移的性质,掌握平移的性质是解题的关键3【分析】根据旋转角相等可得,进而勾股定理求解即可【详解】解:四边形是正方形将绕点B顺时针方向旋转,能与重合,故答案为:【点睛】本题考查了旋转的性质,勾股定理,求得旋转角相等且等于90是解题的关键5、1【分析】根据关于原点对称的点的特点,可得,然后代入计算即可【详解】解:点与点关于原点对称,则,故答案为:【点睛】题目主要考查关于原点对称的点的特点,乘方运算等,理解关于原点对称的点的特点是解题关键三、解答题1、(1)AFDBCE;(2)AFDGCD或AFD+GCD180;2+
18、2【分析】(1)先判断出BCEACD,再利用三角形的内角和定理,判断出ACDAFD,即可得出结论;(2)先判断出ACD是等边三角形,得出ADCD,再判断出ACDAFD,进而判断出AODCOG(SAS),得出ADCG,即可得出结论;先判断出GCBBCE,进而判断出GCBACE,进而判断出GCBACE,得出BCCE4,最后用勾股定理即可得出结论【详解】解:(1)如图1,AF与CD的交点记作点N,由旋转知,ACBDCE,AD,BCEACD,ACD180AANC,AFD180DDNF,ANCDNF,ACDAFD,AFDBCE,故答案为:AFDBCE; (2)AFDGCD或AFD+GCD180,理由:如
19、图2,连接AD,由旋转知,CABCDE,CACD,ACD60,ACD是等边三角形,AMCDMF,CABCDE,ACDAFD60,O是AC的中点,AOCO,ODOG,AODCOG,AODCOG(SAS),ADCG,CGCD,GCD2ACD120,AFDGCD或AFD+GCD180,由知,GCD120,ACDBCE60,GCAGCDACD60,GCABCE,GCBGCA+ACB,ACEBCE+ACB,GCBACE,由知,CGCD,CDCA,CGCA,BCEC4,GCBACE(SAS),GBAE,CGCD,OGOD,COGD,COGCOB90ACB45,ACBCBO45,BOOC,BC4,GCA60
20、,G30,GBOG+BO2+2,AE2+2【点睛】此题是几何变换综合题,主要考查了旋转的性质,全等三角形的判定和性质,等边三角形的性质与判定,勾股定理,熟练运用全等三角形的判定与性质是解本题的关键2、(1)BC=CE+DC,证明见解析;(2)7;(3)BDCE,证明见解析【分析】(1)根据BAC=DAE=90,得出BAD=CAE,证明BADCAE(SAS),得出BD=CE即可;(2)根据ABC=ACB=45,得出BAC=180-ABC-ACB=90,根据DAE=90,可证BAD=CAE,可证BADCAE,可得BD=CE=7;(3)由(2)得BADCAE得出ADB=AEC,根据EAD=90得出A
21、EN+ANE=90根据对顶角性质得出ANE=DNM 可求DNM+ADB=ANE+AEC=90即可【详解】证明:(1)结论:BC=CE+DC证明如下:BAC=DAE=90,BAD+DAC=DAC+CAE,BAD=CAE,BAD和CAE中,BADCAE(SAS),BD=CE,BC=BD+DC,BC=CE+DC ;(2)ABC=ACB=45,BAC=180-ABC-ACB=90,DAE=90,BAC+CAD=CAD+DAE,BAD=CAE,在BAD和CAE中,BADCAE(SAS),BD=CE=7;(3)结论:BDCE设EC与AD交于N,BD与CE交于M,如图2,由(2)得BADCAE, ADB=A
22、EC, EAD=90,AEN+ANE=90,ANE=DNM , DNM+ADB=ANE+AEC=90,NMD=90,BDCE【点睛】本题考查三角形全等判定与性质,图形性质性质,线段和差,直线位置关系,掌握三角形全等判定与性质,图形性质性质,线段和差,直线位置关系是解题关键3、(1)见详解;(2)120;(2)120【分析】(1)如图1,根据等边三角形的性质得到OD=OC=OA=OB,COD=AOB=60,则利用根据“SAS”判断AOCBOD;(2)利用AOCBOD得到CAO=DBO,然后根据三角形内角和可得到AEB=AOB=60,即可求出答案;(3)如图2,与(1)的方法一样可证明AOCBOD
23、;则CAO=DBO,然后根据三角形内角和可求出AEB=AOB=60,即可得到答案【详解】(1)证明:如图1,ODC和OAB都是等边三角形,OD=OC=OA=OB,COD=AOB=60,BOD=AOC=120,在AOC和BOD中AOCBOD;(2)解:AOCBOD,CAO=DBO,1=2,AEB=AOB=60,;(3)解:如图2,ODC和OAB都是等边三角形, OD=OC=OA=OB,COD=AOB=60,AOB+BOC=COD+BOC,即AOC=BOD,在AOC和BOD中AOCBOD;CAO=DBO,1=2,AEB=AOB=60,;即CEB的大小不变【点睛】本题考查了几何变换综合题:熟练掌握旋
24、转的性质、等边三角形的性质和全等三角形的判定与性质;利用类比的方法解决(3)小题4、(1)A1(2,2),A1(2,2),见解析;(2)P点坐标为(2,0)或(2,0)或(4,0)或(2,0)【分析】(1)利用关于原点对称和y轴对称的点的坐标特征写出点A1,A2的坐标,然后描点;(2)先计算出OA的长,再分类讨论:当OPOA或APAO或POPA时,利用直角坐标系分别写出对应的P点坐标【详解】解:(1)A1(2,2),A1(2,2),如图,(2)如图,设P点坐标为(t,0),当OPOA时,P点坐标为或;当APAO时,P点坐标为(4,0),当POPA时,P点坐标为(2,0),综上所述,P点坐标为或
25、或(4,0)或(2,0)【点睛】本题考查的是轴对称的性质,中心对称的性质,坐标与图形,等腰三角形的定义,清晰的分类讨论是解本题的关键.5、(1)见解析;(2)见解析;(3)见解析【分析】(1)因为AB=5,作腰为5的等腰三角形即可(答案不唯一);(2)作边长为2,高为4的平行四边形即可;(3)根据(1)的结论,作BG边的中线,即可得解【详解】解:(1)如图中,ABC即为所求作(答案不唯一);(2)如图中,平行四边形ABCD即为所求作;(3)如图中,ABC即为所求作(答案不唯一);AB=AG,BC=CG,ACBG,ABG的面积为,ABC的面积为5,且ACB=90【点睛】本题考查作图-应用与设计,等腰三角形的判定和性质,勾股定理及其逆定理等知识,解题的关键是理解题意,灵活运用所学知识解决问题