《2022年最新北师大版八年级数学下册第三章图形的平移与旋转综合测评练习题(无超纲).docx》由会员分享,可在线阅读,更多相关《2022年最新北师大版八年级数学下册第三章图形的平移与旋转综合测评练习题(无超纲).docx(24页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、八年级数学下册第三章图形的平移与旋转综合测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列图形中,既是轴对称图形又是中心对称图形的是( )ABCD2、如图,把含30的直角三角板ABC绕点B顺时针旋转
2、至如图EBD,使BC在BE上,延长AC交DE于F,若AF8,则AB的长为()A4B4C4D63、ABC中,ACB=90,A=,以C为中心将ABC旋转角到A1B1C(旋转过程中保持ABC的形状大小不变)B1点恰落在AB上,如图,则旋转角与的数量关系为()ABCD4、如图,ABC中,C=84,CBA=56,将ABC挠点B旋转到DBE,使得DE/AB,则EBC的度数为( )A28B40C42D505、对于坐标平面内的点,先将该点向右平移1个单位,再向上平移2个单位,这种点的运动称为点的斜平移,如点P(2,3)经1次斜平移后的点的坐标为(3,5)已知点A的坐标为(2,0),点Q是直线l上的一点,点A关
3、于点Q的对称点为点B,点B关于直线l的对称点为点C,若点B由点A经n次斜平移后得到,且点C的坐标为(8,6),则ABC的面积是()A12B14C16D186、在平面直角坐标系中,点关于原点对称的点的坐标是( )ABCD7、在平面直角坐标系中,点(1,3)关于原点对称的点的坐标是 ( )A( - 1, - 3)B( - 1,3)C(1, - 3)D(3,1)8、下列图形中,既是轴对称图形又是中心对称图形的是()ABCD9、下列几何图形既是轴对称图形又是中心对称图形的是( )ABCD10、如图,将ABC绕顶点C逆时针旋转角度得到ABC,且点B刚好落在AB上若A26,BCA44,则等于( )A37B
4、38C39D40第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在平面直角坐标系中,与点关于原点对称的点的坐标是_2、如图,在平面直角坐标系中,一次函数y2x4的图像与x轴、y轴分别交于点A、B,将直线AB绕点B顺时针旋转45,交x轴于点C,则直线BC的函数表达式为_3、如图所示,把图中的交通标志图案绕它的中心旋转一定角度后与自身重合,则这个旋转角度至少为 _4、如图所示,将一个顶角B30的等腰三角形ABC绕点A顺时针旋转(0180),得到等腰三角形ABC,使得点B,A,C在同一条直线上,则旋转角_度5、如图,一次函数y2x4的图像与坐标轴分别交于A、B两点,把线段AB
5、绕点A逆时针旋转90,点B落在点B处,则点B的坐标是_三、解答题(5小题,每小题10分,共计50分)1、如图,在直角坐标系中,点A(3,3),B(4,0),C(0,2)(1)画出ABC关于原点O对称的A1B1C1(2)求A1B1C1的面积2、如图,在平面直角坐标系中,已知点A(1,4),B(4,4),C(2,1)(1)请在图中画出ABC;(2)将ABC向左平移5个单位,再沿x轴翻折得到A1B1C1,请在图中画出A1B1C1;(3)若ABC 内有一点P(a,b),则点P经上述平移、翻折后得到的点P1的坐是 3、如图所示的方格纸中,每个小正方形的边长都是1个单位长度,三角形ABC的三个顶点都在小正
6、方形的顶点上(1)画出三角形ABC向左平移4个单位长度后的三角形DEF(点D、E、F与点A、B、C对应),并画出以点E为原点,DE所在直线为x轴,EF所在直线为y轴的平面直角坐标系;(2)在(1)的条件下,点D坐标(3,0),将三角形DEF三个顶点的横坐标都减去2,纵坐标都加上3,分别得到点P、Q、M(点P、Q、M与点D、E、F对应),画出三角形PQM,并直接写出点P的坐标4、如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立如图所示的平面直角坐标系后,的顶点均在格点上,且坐标分别为:A(3,3)、B(1,1)、C(4,1)依据所给信息,解决下列问题:(1)请你画出将向右平移3个单位
7、后得到对应的;(2)再请你画出将沿x轴翻折后得到的;(3)若连接、,请你直接写出四边形的面积5、(1)如图所示,图中的两个三角形关于某点对称,请找出它们的对称中心O(2)如图所示,已知ABC的三个顶点的坐标分别为A(4,1),B(1,1),C(3,2)将ABC绕原点O旋转180得到A1B1C1,请画出A1B1C1,并写出点A1的坐标-参考答案-一、单选题1、B【分析】根据轴对称图形与中心对称图形的概念对各图形分析判断后利用排除法求解【详解】A、是轴对称图形,不是中心对称图形,故此选项错误;B、是轴对称图形,又是中心对称图形,故此选项正确;C、是轴对称图形,不是中心对称图形,故此选项错误;D、是
8、轴对称图形,不是中心对称图形,故此选项错误;故选:B【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合2、C【分析】根据旋转的性质得到ABBE,AE30,设BCx,根据直角三角形的性质得到ABDE2x,根据勾股定理得到AC,根据题意列方程即可得到结论【详解】解:把含30的直角三角板ABC绕点B顺时针旋转得到EBD,ABBE,AE30,ACB90,EDF90,设BCx,ABBE2x,CEx,AC,ECF90,E30,CFEF,CEx,CF,AF8,xAB2x,故选:C【点睛】本题考
9、查了旋转的性质,含30角的直角三角形的性质,勾股定理,熟练掌握旋转的性质是解题的关键3、D【分析】由旋转性质以及等腰三角形性质计算即可【详解】由旋转性质可知A=A1=,BC=B1C,A1CA+ACB1=90,ACB1+B1CB=90,B1CB=A1CA =,又ABC+A=90,A1B1C+A1=90ABC=A1B1C=等腰三角形CB1B中,CB1B=CBB1=,中CB1B+CBB1+B1CB=180故选:D【点睛】本题考查了旋转的性质,等腰三角形性质以及三角形内角和等,旋转的性质:(1)对应点到旋转中心的距离相等;(2)对应点与旋转中心所连线段的夹角等于旋转角;(3)旋转前后的图形全等4、B【
10、分析】先求出A=40,再根据旋转和平行得出DBA=40,进而可求EBC的度数【详解】解:ABC中,C=84,CBA=56,A=180-C -CBA=40,由旋转可知,D=A=40,EBC=DBA,DE/AB,D=DBA=40,EBC=DBA=40,故选:B【点睛】本题考查了旋转的性质和平行线的性质,解题关键是熟记旋转的性质,准确识图,正确进行推导计算5、A【分析】连接CQ,根据中心和轴对称的性质和直角三角形的判定得到ACB90,延长BC交x轴于点E,过C点作CFAE于点F,根据待定系数法得出直线的解析式进而解答即可【详解】解:连接CQ,如图:由中心对称可知,AQBQ,由轴对称可知:BQCQ,A
11、QCQBQ,QACACQ,QBCQCB,QAC+ACQ+QBC+QCB180,ACQ+QCB90,ACB90,ABC是直角三角形,延长BC交x轴于点E,过C点作CFAE于点F,如图,A(2,0),C(8,6),AFCF6,ACF是等腰直角三角形,AEC45,E点坐标为(14,0),设直线BE的解析式为ykx+b,C,E点在直线上,可得:,解得:,yx+14,点B由点A经n次斜平移得到,点B(n+2,2n),由2nn2+14,解得:n4,B(6,8),ABC的面积SABESACE12812612,故选:A【点睛】本题考查轴对称的性质,中心对称的性质,等腰三角形的判定与性质,求解一次函数的解析式,
12、得到的坐标是解本题的关键6、A【分析】关于原点成中心对称的两个点的坐标规律:横坐标与纵坐标都互为相反数,根据原理直接作答即可.【详解】解:点关于原点对称的点的坐标是: 故选A【点睛】本题考查的是关于原点成中心对称的两个点的坐标规律,掌握“关于原点成中心对称的两个点的坐标规律:横坐标与纵坐标都互为相反数”是解题的关键.7、A【分析】由两个点关于原点对称时,它们的坐标符号相反特点进行求解即可【详解】解:两个点关于原点对称时,它们的坐标符号相反,点关于原点对称的点的坐标是故选:A【点睛】题目考查了关于原点对称的点的坐标,解题关键是掌握好关于原点对称点的坐标规律8、D【详解】解:是轴对称图形,不是中心
13、对称图形,故本选项不符合题意;是轴对称图形,不是中心对称图形,故本选项不符合题意;不是轴对称图形,也不是中心对称图形,故本选项不符合题意;既是轴对称图形,又是中心对称图形,故本选项符合题意故选:D【点睛】本题考查了中心对称图形与轴对称图形的概念,解题的关键是判断轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;判断中心对称图形是要寻找对称中心,旋转180度后与原图重合9、D【分析】根据轴对称图形与中心对称图形的概念求解【详解】解:A、不是轴对称图形,是中心对称图形,选项说法错误,不符合题意;B、是轴对称图形,不是中心对称图形,选项说法错误,不符合题意;C、是轴对称图形,不是中心对称图形,选
14、项说法错误,不符合题意;D、是轴对称图形,是中心对称图形,选项说法正确,符合题意;故选D【点睛】本题考查了中心对称图形与轴对称图形的概念解题的关键是掌握轴对称图形寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合10、D【分析】由题意根据ABC绕顶点C逆时针选择角度得到ABC,且点B刚好落在AB上A=26,BCA=44,可以求得CBB和CBB的度数,然后根据三角形内角和即可得到BCB的度数,从而可以得到的度数【详解】解:ABC绕顶点C逆时针选择角度得到ABC,且点B刚好落在AB上,A=26,BCA=44,A=A=26,CB=CB,CBB=A+BC
15、A=70,CB=CB,CBB=CBB,CBB=70,BCB=180-70-70=40.即等于40,故选:D【点睛】本题考查三角形的旋转问题和三角形内角和,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答二、填空题1、(-3,-1)【分析】由题意直接根据两个点关于原点对称时,它们的坐标符号相反进行分析即可得出答案.【详解】解:在平面直角坐标系中,与点关于原点对称的点的坐标是(-3,-1).故答案为:(-3,-1).【点睛】本题考查的是关于原点的对称的点的坐标,注意掌握平面直角坐标系中任意一点P(x,y),关于原点的对称点是(-x,-y),即关于原点的对称点,横纵坐标都变成
16、相反数2、#【分析】先求出点A、B的坐标,过点A作AFAB,交直线BC于点F,过点F作EFx轴,垂足为E,然后由全等三角形的判定和性质,等腰直角三角形的性质,求出点F的坐标,再利用待定系数法,即可求出答案【详解】解:一次函数y2x4的图像与x轴、y轴分别交于点A、B两点,令,则;令,则,点A为(2,0),点B为(0,4),;过点A作AFAB,交直线BC于点F,过点F作EFx轴,垂足为E,如图,ABF是等腰直角三角形,AF=AB,ABOFAE(AAS),AO=FE,BO=AE,点F的坐标为(,);设直线BC为,则,解得:,直线BC的函数表达式为;故答案为:;【点睛】本题考查了一次函数的性质,全等
17、三角形的判定和性质,等腰三角形的判定和性质,以及旋转的性质,解题的关键是熟练掌握所学的知识,正确的作出辅助线,从而进行解题3、120度【分析】根据图形的对称性,用360除以3计算即可得解【详解】解:3603=120,旋转的角度是120的整数倍,旋转的角度至少是120故答案为:120【点睛】本题考查了旋转对称图形,仔细观察图形求出旋转角是120的整数倍是解题的关键4、105【分析】利用等腰三角形的性质求出BAC,可得结论【详解】解:BCBA,B30,CBAC(18030)75,旋转角180BAC105,故答案为:105【点睛】本题考查了等腰三角形性质以及旋转的角度问题,解题的关键是理解旋转角就是
18、对应线段的夹角5、(4,6)【分析】过作轴,证明,求得线段、,即可求解【详解】解:过作轴,如下图:时,时,即,由题意可得:,又,即故答案为:【点睛】此题考查了一次函数的性质,全等三角形的判定与性质,旋转的性质,解题的关键是灵活运用相关性质进行求解三、解答题1、(1)图形见解析;(2)5【分析】(1)根据关于原点对称的点的坐标特征,依次求出的坐标即可;(2)利用割补法求A1B1C1面积【详解】(1)ABC关于原点O对称的A1B1C1位置如图:(2)【点睛】此题考查了中心对称的知识,解答本题的关键是根据关于原点对称的点的坐标特征得到各点的对应点2、(1)见解析;(2)见解析;(3)(a5,b)【分
19、析】(1)结合直角坐标系,可找到三点的位置,顺次连接即可得出ABC(2)将各点分别向左平移5个单位长度,再作出关于x轴的对称点,顺次连接即可得到A1B1C1;(3)根据点的坐标平移规律可得结论【详解】解:(1)如图,ABC即为所画(2)如图,A1B1C1即为所画(3)点P(a,b)向左平移5个单位后的坐标为(a5,b),关于x轴对称手点的坐标为(a5,b) 故答案为:(a5,b)【点睛】此题考查了平移作图、轴对称变换以及直角坐标系的知识,解答本题的关键是掌握平移和轴对称的特点,找到各点在直角坐标系的位置3、(1)见解析;(2)画图见解析,点P的坐标为(-5,3)【分析】(1)根据平移的特点先找
20、出D、E、F所在的位置,然后根据题意建立坐标系即可;(2)将三角形DEF三个顶点的横坐标都减去2,纵坐标都加上3,分别得到点P、Q、M,即点P可以看作是点D向左平移2个单位,向上平移3个单位得到的,由此求解即可【详解】解:(1)如图所示,即为所求;(2)如图所示,PQM即为所求;P是D(-3,0)横坐标减2,纵坐标加3得到的,点P的坐标为(-5,3)【点睛】本题主要考查了平移作图,根据平移方式确定点的坐标,解题的关键在于能够熟练掌握点坐标平移的特点4、(1)见解析;(2)见解析;(3)16【分析】(1)利用平移的性质得出对应点位置进而得出答案;(2)利用关于x轴对称的点的坐标找出A2、B2、C
21、2的坐标,然后描点即可;(3)运用割补法求解即可【详解】解:(1)如图,即为所作;(2)如图,即为所作;(3)四边形的面积=16【点睛】此题主要考查了轴对称变换以及平移变换和四边形面积求法,根据题意得出对应点位置是解题关键5、(1)见解析;(2)画图见解析,点A1的坐标为(-4,1)【分析】(1)根据对称中心的性质可得对应点连线的交点即为对称中心;(2)根据题意作出A,B,C绕原点O旋转180得到的点A1,B1,C1,然后顺次连接A1,B1,C1即可,根据点A1的在平面直角坐标系中的位置即可求得坐标【详解】(1)如图所示,点O即为要求作的对称中心(2)如图所示,A1B1C1即为要求作的三角形,由点A1的在平面直角坐标系中的位置可得,点A1的坐标为(-4,1)【点睛】此题考查了平面直角坐标系中的几何旋转作图,中心对称的性质,解题的关键是熟练掌握中心对称的性质