《精品试题北师大版八年级数学下册第三章图形的平移与旋转定向测评练习题(无超纲).docx》由会员分享,可在线阅读,更多相关《精品试题北师大版八年级数学下册第三章图形的平移与旋转定向测评练习题(无超纲).docx(22页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、八年级数学下册第三章图形的平移与旋转定向测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,将绕点按顺时针旋转一定角度得到,点的对应点点恰好落在边上,若,则的长为( )A3B2CD12、下列各曲线是
2、在平面直角坐标系xOy中根据不同的方程绘制而成的,其中是中心对称图形的是( )ABCD3、下列图标中,既是中心对称图形又是轴对称图形的是( )ABCD4、将点P(2,1)以原点为旋转中心,顺时针旋转90得到点P,则点P的坐标是()A(2,1)B(2,1)C(1,2)D(1,2)5、下列图形中,是中心对称图形的是( )AB CD6、如图,在平面直角坐标系中,点A的坐标为,沿x轴向右平移后得到,A点的对应点在直线上,则点与其对应点之间的距离为( )A4B6C8D107、在平面直角坐标系中,若点与点关于原点对称,则点在( )A第一象限B第二象限C第三象限D第四象限8、已知点关于原点的对称点在一次函数
3、的图象上,则实数的值为( )A1B-1C-2D29、下列图形中,不是中心对称图形的是( )ABCD10、 “垃圾分类,利国利民”,在2019年7月1日起上海开始正式实施垃圾分类,到2020年底先行先试的46个重点城市,要基本建成垃圾分类处理系统以下四类垃圾分类标志的图形,其中既是轴对称图形又是中心对称图形的是( )A可回收物B有害垃圾C厨余垃圾D其他垃圾第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,ABC中,ACB90,A30,将ABC绕C点按逆时针方向旋转角(090)得到DEC,设CD交AB于F,连接AD,当旋转角度数为_,ADF是等腰三角形2、正方形ABCD
4、在坐标系中的位置如图所示A(0,3),B(2,4),C(3,2),D(1,10)将正方形ABCD绕D点旋转90后,点B到达的位置坐标为_3、如图所示,把一个直角三角尺ACB绕着30角的顶点B顺时针旋转,使得点A落在CB的延长线上的点E处,则BDC的度数为_度4、如图,P是正方形ABCD内一点,将绕点B顺时针方向旋转,能与重合,若,则_5、在平面直角坐标系中,点P坐标为(2,3),则点P关于x轴对称的点的坐标为_;点P关于原点对称的点坐标为_三、解答题(5小题,每小题10分,共计50分)1、如图,在ABC中,BAC120,将ABC绕点C逆时针旋转得到DEC,点A,B的对应点分别为D,E,连接AD
5、当点A,D,E在同一条直线上时,求证:ADC是等边三角形2、如图,在方格纸中,每个小正方形的边长为一个长度单位,点A、B、C都在格点上(1)画出线段BC;(2)将线段BC向上平移三个单位,得到线段DE,在图中画出线段DE;(3)三角形ADE的面积= 3、如图,在平面直角坐标系中,ABC的顶点坐标为A(1,1),B(3,2),C(2,4)(1)在图中作出ABC向右平移4个单位,再向下平移5个单位得到的A1B1C1;(2)在图中作出A1B1C1关于y轴对称的A2B2C2;(3)经过上述平移变换和轴对称变换后,ABC内部的任意一点P(a,b)在A2B2C2内部的对应点P2的坐标为 4、如图(1)将A
6、BD平移,使点D沿BD延长线移至点C得到,交AC于点E,AD平分BAC(1)猜想EC与之间的关系,并说明理由(2)如图将ABD平移至如图(2)所示,得到,请问:平分吗?为什么?5、在平面直角坐标系中,的顶点坐标是、(1)画出绕点B逆时针旋转的;(2)画出关于点O的中心对称图形;(3)可由绕点M旋转得,请写出点M的坐标:_-参考答案-一、单选题1、B【分析】由直角三角形的性质可得AB2,BC2AB4,由旋转的性质可得ADAB,可证ADB是等边三角形,可得BDAB2,即可求解【详解】解:,BAC90C=90-BC2ABBC2=AC2+AB2AB2,BC2AB4,RtABC绕点A按顺时针旋转一定角度
7、得到RtADE,ADAB,且B60ADB是等边三角形BDAB2,CDBCBD422故选:B【点睛】本题考查了旋转的性质,等边三角形的判定和性质,直角三角形的性质,熟练运用旋转的性质是本题的关键2、C【分析】利用中心对称图形的定义:旋转能与自身重合的图形即为中心对称图形,即可判断出答案【详解】解:A、不是中心对称图形,故A错误B、不是中心对称图形,故B错误C、是中心对称图形,故C正确D、不是中心对称图形,故D错误故选:C【点睛】本题主要是考查了中心对称图形的定义,熟练掌握中心对图形的定义,是解决该题的关键3、B【分析】由题意直接根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得出答案【详
8、解】解:A是轴对称图形,不是中心对称图形,故本选项不符合题意;B既是轴对称图形,又是中心对称图形,故本选项符合题意;C不是轴对称图形,是中心对称图形,故本选项不符合题意;D是轴对称图形,不是中心对称图形,故本选项不符合题意故选:B【点睛】本题考查中心对称图形与轴对称图形的概念,注意掌握把一个图形绕某一点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形4、D【分析】如图,作PEx轴于E,PFx轴于F利用全等三角形的性质解决问题即可【详解】解:如图,作PEx轴于E,PFx轴于F PEOO
9、FPPOP90,POE+POF90,POF+P90,POEP,OPOP,POEOPF(AAS),OFPE1,PFOE2,P(1,-2)故选:D【点睛】本题考查旋转变换,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题5、B【分析】根据中心对称图形的定义求解即可【详解】解:A、不是中心对称图形,不符合题意;B、是中心对称图形,符合题意;C、不是中心对称图形,不符合题意;D、不是中心对称图形,不符合题意故选:B【点睛】此题考查了中心对称图形,解题的关键是熟练掌握中心对称图形的定义中心对称图形:在平面内,把一个图形绕着某个点旋转180,如果旋转后的图形能与原来的图
10、形重合,那么这个图形叫做中心对称图形6、D【分析】先根据平移的特点可知所求的距离为,且,点纵坐标与点A纵坐标相等,再将其代入直线求出点横坐标,从而可知的长,即可得出答案【详解】解:A(0,6)沿x轴向右平移后得到,点的纵坐标为6,令,代入直线得,的坐标为(10,6),由平移的性质可得,故选D【点睛】本题考查了平移的性质、一次函数图像上点的坐标特点,掌握理解平移的性质是解题关键7、B【分析】根据点(x,y)关于原点对称的点的坐标为(x,y)可求得m、n值,再根据象限内点的坐标的符号特征即可解答【详解】解:点与关于原点对称,m=-2,m-n=3,n=1,点M(-2,1)在第二象限,故选:B【点睛】
11、本题考查平面直角坐标系中关于原点对称的点的坐标、点所在的象限,熟知关于原点对称的点的坐标特征是解答的关键8、B【分析】求出点关于原点的对称点的坐标,代入函数解析式中求解即可【详解】解:点关于原点的对称点的坐标为(-2,3),代入得,解得,故选:B【点睛】本题考查了关于原点对称的点的坐标特征和待定系数法,解题关键是求出对称点的坐标,熟练运用待定系数法求值9、C【详解】解:选项A是中心对称图形,故A不符合题意;选项B是中心对称图形,故B不符合题意;选项C不是中心对称图形,故C符合题意;选项D是中心对称图形,故D不符合题意;故选C【点睛】本题考查的是中心对称图形的识别,掌握“中心对称图形的定义判断中
12、心对称图形”是解本题的关键,中心对称图形的定义:把一个图形绕某点旋转后能够与自身重合,则这个图形是中心对称图形.10、B【分析】由题意根据轴对称图形和中心对称图形的定义对各选项进行判断,即可得出答案【详解】解:A、是轴对称图形,不是中心对称图形,故此选项不合题意;B、既是轴对称图形,也是中心对称图形,故此选项符合题意;C、是轴对称图形,不是中心对称图形,故此选项不合题意;D、既不是轴对称图形,也不是中心对称图形,故此选项不符合题意;故选:B.【点睛】本题考查中心对称图形与轴对称图形的概念,注意掌握判断轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;判断中心对称图形是要寻找对称中心,旋转1
13、80度后与原图重合二、填空题1、40【分析】根据旋转的性质可得AC=CD,根据等腰三角形的两底角相等求出ADF=DAC,再表示出DAF,根据三角形的一个外角等于与它不相邻的两个内角的和表示出AFD,然后分ADF=DAF,ADF=AFD,DAF=AFD三种情况讨论求解【详解】解:ABC绕C点逆时针方向旋转得到DEC,AC=CD,ADF=DAC=(180-),DAF=ADC-BAC=(180-)-30,根据三角形的外角性质,AFD=BAC+DAC=30+,ADF是等腰三角形,分三种情况讨论,ADF=DAF时,(180-)=(180-)-30,无解;ADF=AFD时,(180-)=30+,解得=40
14、,DAF=AFD时,(180-)-30=30+,解得=20,综上所述,旋转角度数为20或40故答案为:20或40【点睛】本题考查了旋转的性质,等边对等角的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,难点在于要分情况讨论2、 (4,0)或(2,2)【分析】利用网格结构找出点B绕点D旋转90后的位置,然后根据平面直角坐标系写出点的坐标即可【详解】解:如图,点B绕点D旋转90到达点B或B,点B的坐标为(4,0),B(2,2)故答案为:(4,0)或(2,2)【点睛】本题主要考查了坐标与图形变化旋转,解题的关键在于能够利用数形结合的思想进行求解3、15【分析】根据旋转的性质ABCEDB,B
15、C=BD,求出CBD的度数,再求BDC的度数【详解】解:根据旋转的性质ABCEDB,BCBD,CBD是等腰三角形,BDCBCD,CBD180DBE18030150,BDC(180CBD)215故答案为15【点睛】根据旋转的性质,确定各角之间的关系,利用已知条件把一个直角三角尺ACB绕着30角的顶点B顺时针旋转求出即可4、故答案为: 【点睛】本题考查了平移的性质,掌握平移的性质是解题的关键3【分析】根据旋转角相等可得,进而勾股定理求解即可【详解】解:四边形是正方形将绕点B顺时针方向旋转,能与重合,故答案为:【点睛】本题考查了旋转的性质,勾股定理,求得旋转角相等且等于90是解题的关键5、(2,-3
16、) (2,-3) 【分析】根据关于x轴对称点的坐标以及关于原点对称点的性质得出答案【详解】解:点P坐标为(2,3),则点P关于x轴对称的点的坐标为(2,-3);点P关于原点对称的点坐标为(2,-3)故答案为:(2,-3);(2,-3)【点睛】本题主要考查了关于x轴对称点的坐标以及关于原点对称点的坐标,关键是掌握坐标的变化特点关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数;关于原点对称点的坐标特点:横坐标互为相反数、纵坐标互为相反数三、解答题1、见解析【分析】根据三角形旋转得出 ,根据点A,D,E在同一条直线上利用邻补角关系求出,根据等边三角形判定定理得出为等边三角形【详解】证明:绕点C
17、逆时针旋转得到, ,点A,D,E在同一条直线上,为等边三角形【点睛】本题考查三角形旋转性质,三点共线,领补角定义,等边三角形判定,掌握三角形旋转性质,三点共线,领补角定义,等边三角形判定是解题关键2、(1)见解析;(2)见解析;(3)8【分析】(1)连接B、C两点即可;(2)根据平移的定义,得出对应点的位置,连接即可;(3)根据三角形的面积公式计算即可【详解】解:(1)线段BC如图所示,(2)线段DE如图所示,(3)三角形ADE的面积=【点睛】本题考查作图-平移变换解题的关键是熟练掌握平移变换的性质.3、(1)见解析;(2)见解析;(3)(a4,b5)【分析】(1)利用平移变换的性质分别作出A
18、,B,C 的对应点A1,B1,C1即可;(2)利用轴对称变换的性质分别作出A1,B1,C1的对应点A2,B2,C2即可;(3)利用平移变换的性质,轴对称变换的性质解决问题即可【详解】解:(1)如图,A1B1C1即为所求;(2)如图,A2B2C2即为所求;(3)由题意得:P(a4,b5)故答案为:(a4,b5);【点睛】本题考查作图轴对称变换,平移变换的性质等知识,解题的关键是掌握轴对称的性质,平移变换的性质,属于中考常考题型4、(1),见解析;(2)平分,见解析【分析】(1)由题意根据平移的性质得出BAD=DAC,BAD=A,ABAB,进而得出BAC=BEC,进而得出答案;(2)根据题意利用平
19、移的性质得出BAD=BAD,ABAB,进而得出BAD=BAC,即可得出BAD=BAC【详解】解:(1)BEC=2A,理由:将ABD平移,使点D沿BD延长线移至点C得到ABD,AB交AC于点E,AD平分BAC,BAD=DAC,BAD=A,ABAB,BAC=BEC,BAD=A=BAC=BEC,即BEC=2A.(2)AD平分BAC,理由:将ABD平移后得到ABD,BAD=BAD,ABAB,BAC=BAC.BAD=BAC, BAD=BAC,AD平分BAC.【点睛】本题主要考查平移的性质,熟练掌握并根据平移的性质得出对应角、对应边之间的关系是解题的关键5、(1)画图见解析;(2)画图见解析;(3)【分析】(1)分别确定绕逆时针旋转后的对应点再顺次连接从而可得答案;(2)分别确定关于原点对称的对称点再顺次连接从而可得答案;(3)如图,由;是旋转对应点,则到旋转中心的距离相等,到旋转中心的距离相等,可得线段的垂直平分线的交点即为旋转中心,再根据在坐标系内的位置写出其坐标即可.【详解】解:(1)如图,是所求作的三角形,(2)如图,是所求作的三角形;(3)如图,;是旋转对应点, 到旋转中心的距离相等,到旋转中心的距离相等,则线段的垂直平分线的交点即为旋转中心,其坐标为:【点睛】本题考查的是旋转作图,中心对称的作图,确定旋转中心,掌握旋转的性质是解本题的关键.