《精品解析2021-2022学年人教版八年级数学下册第十八章-平行四边形综合测试练习题(含详解).docx》由会员分享,可在线阅读,更多相关《精品解析2021-2022学年人教版八年级数学下册第十八章-平行四边形综合测试练习题(含详解).docx(31页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、人教版八年级数学下册第十八章-平行四边形综合测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在菱形ABCD中,两条对角线AC=10,BD=24,则此菱形的边长为( )A14B25C26D132、如图,
2、以O为圆心,长为半径画弧别交于A、B两点,再分别以A、B为圆心,以长为半径画弧,两弧交于点C,分别连接、,则四边形一定是( )A梯形B菱形C矩形D正方形3、如图,的对角线交于点O,E是CD的中点,若,则的值为( )A2B4C8D164、如图,将矩形纸片按如图所示的方式折叠,得到菱形,若,则的长为( )A2BC4D5、如图,OAOB,OB4,P是射线OA上一动点,连接BP,以B为直角顶点向上作等腰直角三角形,在OA上取一点D,使CDO45,当P在射线OA上自O向A运动时,PD的长度的变化()A一直增大B一直减小C先增大后减小D保持不变6、如图,在矩形ABCD中,点E是BC的中点,连接AE,点F是
3、AE的中点,连接DF,若AB9,AD,则四边形CDFE的面积是()ABCD547、如图所示,正方形ABCD的面积为16,ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PDPE的和最小,则最小值为( )A2B3C4D68、如图,在ABC中,ABC90,AC18,BC14,D,E分别是AB,AC的中点,连接DE,BE,点M在CB的延长线上,连接DM,若MDBA,则四边形DMBE的周长为( )A16B24C32D409、下列说法正确的是()A平行四边形的对角线互相平分且相等B矩形的对角线相等且互相平分C菱形的对角线互相垂直且相等D正方形的对角线是正方形的对称轴10、如图,点E
4、是长方形ABCD的边CD上一点,将ADE沿着AE对折,点D恰好折叠到边BC上的F点,若AD10,AB8,那么AE长为()A5B12C5D13第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,ABC中,D、E分别是AB、AC的中点,若DE4cm,则BC_cm2、如图,在矩形ABCD中,BC2,ABx,点E在边CD上,且CEx,将BCE沿BE折叠,若点C的对应点落在矩形ABCD的边上,则x的值为_3、如图,矩形ABCD中,AC、BD相交于点O且AC=12,如果AOD=60,则DC=_ 4、菱形的对角线之比为3:4,且面积为24,则它的对角线分别为_5、在菱形ABCD中,
5、B60,BC2cm,M为AB的中点,N为BC上一动点(不与点B重合),将BMN沿直线MN折叠,使点B落在点E处,连接DE,CE,当CDE为等腰三角形时,线段BN的长为_三、解答题(5小题,每小题10分,共计50分)1、如图,ABCD是平行四边形,AD4,AB5,点A的坐标为(2,0),求点B、C、D的坐标2、已知:如图,在中,求证:互相平分如图,将矩形纸片ABCD沿对角线AC折叠,使点B落在点E处,AE交CD于点F,且已知AB=8,BC=4(1)判断ACF的形状,并说明理由;(2)求ACF的面积;3、如图,在锐角ABC内部作出一个菱形ADEF,使A为菱形的一个内角,顶点D、E、F分别落在AB、
6、BC、CA边上(要求:尺规作图,不写作法,保留作图痕迹)4、已知:如图,AD是BC上的高线,CE是AB边上的中线,于G(1)若,求线段AC的长;(2)求证:5、如图,ABC中,ACB90,AB5cm,BC4cm,过点A作射线lBC,若点P从点A出发,以每秒2cm的速度沿射线l运动,设运动时间为t秒(t0),作PCB的平分线交射线l于点D,记点D关于射线CP的对称点是点E,连接AE、PE、BP(1)求证:PCPD;(2)当PBC是等腰三角形时,求t的值;(3)是否存在点P,使得PAE是直角三角形,如果存在,请直接写出t的值,如果不存在,请说明理由-参考答案-一、单选题1、D【解析】【分析】由菱形
7、的性质和勾股定理即可求得AB的长【详解】解:四边形ABCD是菱形,AC=10,BD=24, AB=BC=CD=AD,ACBD,OB=OD=BD=12,OA=OC=AC=5,在RtABO中,AB=13,故选:D【点睛】本题考查了菱形的性质、勾股定理等知识,熟练掌握菱形的性质,由勾股定理求出AB=13是解题的关键2、B【解析】【分析】根据题意得到,然后根据菱形的判定方法求解即可【详解】解:由题意可得:,四边形是菱形故选:B【点睛】此题考查了菱形的判定,解题的关键是熟练掌握菱形的判定方法菱形的判定定理:四条边都相等四边形是菱形;一组邻边相等的平行四边形是菱形;对角线垂直的平行四边形是菱形3、B【解析
8、】【分析】根据平行四边形的性质可得,SBOC=SAOD=SCOD=SAOB=8,再根据三角形的中线平分三角形的面积可得根据三角形的中线平分三角形的面积可得SDOE=4,进而可得答案【详解】解:四边形ABCD是平行四边形,SBOC=SAOD=SCOD=SAOB=8,点E是CD的中点,SDOE=SCOD=4,故选:B【点睛】此题主要考查了平行四边形的性质,以及三角形中线的性质,掌握平行四边形的性质,三角形的中线平分三角形的面积是解答本题的关键4、D【解析】【分析】根据菱形及矩形的性质可得到BAC的度数,从而根据直角三角形的性质求得BC的长【详解】解:四边形AECF为菱形,FCO=ECO,EC=AE
9、,由折叠的性质可知,ECO=BCE,又FCO+ECO+BCE=90,FCO=ECO=BCE=30,在RtEBC中,EC=2EB,又EC=AE,AB=AE+EB=6,EB=2,EC=4,RtBCE中,故选:D【点睛】本题主要考查了菱形的性质以及矩形的性质,解决问题的关键是根据折叠以及菱形的性质发现特殊角,根据30的直角三角形中各边之间的关系求得BC的长5、D【解析】【分析】过点作于,于,先根据矩形的判定与性质可得,再根据三角形全等的判定定理证出,根据全等三角形的性质可得,然后根据等腰直角三角形的判定与性质可得,最后根据线段的和差、等量代换即可得出结论【详解】解:如图,过点作于,于,则四边形是矩形
10、,是等腰直角三角形,在和中,是等腰直角三角形,的长度保持不变,故选:D【点睛】本题考查了矩形的判定与性质、三角形全等的判定定理与性质等知识点,通过作辅助线,构造矩形和全等三角形是解题关键6、C【解析】【分析】过点F作,分别交于M、N,由F是AE中点得,根据,计算即可得出答案【详解】如图,过点F作,分别交于M、N,四边形ABCD是矩形,点E是BC的中点,F是AE中点,故选:C【点睛】本题考查矩形的性质与三角形的面积公式,掌握是解题的关键7、C【解析】【分析】先求得正方形的边长,依据等边三角形的定义可知BE=AB=4,连接BP,依据正方形的对称性可知PB=PD,则PE+PD=PE+BP由两点之间线
11、段最短可知:当点B、P、E在一条直线上时,PE+PD有最小值,最小值为BE的长【详解】解:连接BP四边形ABCD为正方形,面积为16,正方形的边长为4ABE为等边三角形,BE=AB=4四边形ABCD为正方形,ABP与ADP关于AC对称BP=DPPE+PD=PE+BP由两点之间线段最短可知:当点B、P、E在一条直线上时,PE+PD有最小值,最小值=BE=4故选:C【点睛】本题考查的是等边三角形的性质、正方形的性质和轴对称最短路线问题,熟知“两点之间,线段最短”是解答此题的关键8、C【解析】【分析】由中点的定义可得AE=CE,AD=BD,根据三角形中位线的性质可得DE/BC,DE=BC,根据平行线
12、的性质可得ADE=ABC=90,利用ASA可证明MBDEDA,可得MD=AE,DE=MB,即可证明四边形DMBE是平行四边形,可得MD=BE,进而可得四边形DMBE的周长为2DE+2MD=BC+AC,即可得答案【详解】D,E分别是AB,AC的中点,AE=CE,AD=BD,DE为ABC的中位线,DE/BC,DE=BC,ABC90,ADE=ABC=90,在MBD和EDA中,MBDEDA,MD=AE,DE=MB,DE/MB,四边形DMBE是平行四边形,MD=BE,AC18,BC14,四边形DMBE的周长=2DE+2MD=BC+AC=18+14=32故选:C【点睛】本题考查全等三角形的判定与性质、三角
13、形中位线的性质及平行四边形的判定与性质,三角形中位线平行于第三边且等于第三边的一半;有一组对边平行且相等的四边形是平行四边形;熟练掌握相关性质及判定定理是解题关键9、B【解析】【分析】根据平行四边形、矩形、菱形、正方形的性质定理判断即可【详解】解:平行四边形的对角线互相平分,不一定相等,A错误;矩形的对角线相等且互相平分,B正确;菱形的对角线互相垂直,不一定相等,C错误;正方形的对角线所在的直线是正方形的对称轴,D错误;故选:B【点睛】本题考查了命题的真假判断,掌握平行四边形、矩形、菱形、正方形的性质是解题的关键10、C【解析】【分析】根据矩形的性质,折叠的性质,勾股定理即可得到结论【详解】解
14、:四边形ABCD是矩形,将ADE沿着AE对折,点D恰好折叠到边BC上的F点,故选:C【点睛】本题考查了翻折变换,矩形的性质,勾股定理等知识,解题的关键是学会利用参数构建方程解决问题二、填空题1、8【解析】【分析】运用三角形的中位线的知识解答即可【详解】解:ABC中,D、E分别是AB、AC的中点DE是ABC的中位线,BC=2DE=8cm故答案是8【点睛】本题主要考查了三角形的中位线,掌握三角形的中位线等于底边的一半成为解答本题的关键2、或【解析】【分析】分两种情况进行解答,即当点落在边上和点落在边上,分别画出相应的图形,利用翻折变换的性质,勾股定理进行计算即可【详解】解:如图1,当点落在边上,由
15、翻折变换可知,在中,由勾股定理得,在中,由勾股定理得,即,解得,或(舍去),如图2,当点落在边上,由翻折变换可知,四边形是正方形,故答案为:或【点睛】本题考查翻折变换,解题的关键是掌握翻折变换的性质以及勾股定理是解决问题的前提3、【解析】【分析】根据矩形的对角线互相平分且相等可得OAOD,然后判断出AOD是等边三角形,再根据勾股定理解答即可【详解】解:四边形ABCD是矩形,OAODAC126,ADC=90,AOD60,AOD是等边三角形,ADOA6,故答案为:【点睛】本题考查了矩形的性质和勾股定理以及等边三角形的判定,解题关键是根据矩形的性质得出AOD是等边三角形4、6和8#8和6【解析】【分
16、析】根据比例设两条对角线分别为3x、4x,再根据菱形的面积等于两对角线乘积的一半列式求出x的值即可【详解】解:设两条对角线分别为3x、4x,根据题意得,3x4x=24,解得x=2(负值舍去),菱形的两对角线的长分别为,故答案为:6和8【点睛】本题考查了菱形的面积,主要利用了菱形的对角线互相垂直平分的性质,菱形的面积的求法,需熟记5、cm或2cm【解析】【分析】分两种情况:如图1,当DE=DC时,连接DM,作DGBC于G,由菱形的性质得出AB=CD=BC=2,ADBC,ABCD,得出DCG=B=60,A=120,DE=AD=2,求出DG=,CG=1,BG=BC+CG=3,由折叠的性质得:EN=B
17、N,EM=BM=AM,MEN=B=60,证明ADMEDM,得出A=DEM=120,证出D、E、N三点共线,设BN=EN=x,则GN=3-x,DN=x+2,在RtDGN中,由勾股定理得出方程,解方程即可;如图2,当CE=CD上,CE=CD=AD,此时点E与A重合,N与点C重合,CE=CD=DE=DA,CDE是等边三角形,BN=BC=2(含CE=DE这种情况).【详解】解:分两种情况,如图1,当DE=DC时,连接DM,作DGBC于G, 四边形ABCD是菱形,AB=CD=BC=2,ADBC,ABCD,DCG=B=60,A=120,DE=AD=2,DGBC,CDG=90-60=30,CG=CD=1,D
18、G=CG=,BG=BC+CG=3,M为AB的中点,AM=BM=1,由折叠的性质得:EN=BN,EM=BM=AM,MEN=B=60,在ADM和EDM中,ADED,AMEM ,DMDM,ADMEDM(SSS),A=DEM=120,MEN+DEM=180,D、E、N三点共线,设BN=EN=x,则GN=3-x,DN=x+2,在RtDGN中,由勾股定理得:,解得:x=,即BN=cm;当CE=CD时,CE=CD=AD,此时点E与A重合,N与点C重合,如图2所示:CE=CD=DE=DA,CDE是等边三角形,BN=BC=2cm(符合题干要求);综上所述,当CDE为等腰三角形时,线段BN的长为cm或2cm;故答
19、案为cm或2cm【点睛】本题考查了折叠变换的性质、菱形的性质、全等三角形的判定与性质、三点共线、勾股定理、直角三角形的性质、等腰三角形的性质等知识,熟练掌握并灵活运用是解题的关键.三、解答题1、【分析】根据,即可求得点,勾股定理求得即可求得点,再根据平行四边形的性质可得点坐标【详解】解:ABCD是平行四边形,轴,由题意可得,即,轴,、【点睛】此题考查了坐标与图形,涉及了勾股定理、平行四边形的性质,解题的关键是掌握并灵活运用相关性质进行求解2、证明见解析【分析】连接,由三角形中位线定理可得,可证四边形ADEF是平行四边形,由平行四边形的性质可得AE,DF互相平分;【详解】证明:连接,ADDB,B
20、EEC,BEEC,AFFC,四边形ADEF是平行四边形,AE,DF互相平分【点睛】本题考查了平行四边形的性质判定和性质及三角形中位线定理,灵活运用这些性质是解题的关键(1)ACF是等腰三角形,理由见解析;(2)10;(3)3、见解析【分析】根据基本作图先作BAC的平分线AE,交BC于E,再利用基本作图作AE的垂直平分线DF交AB于D,交AC与F,连接DE,EF,则菱形ADEF为所求,然后证明即可【详解】解:先作BAC的平分线AE,交BC于E,作AE的垂直平分线DF交AB于D,交AC与F,连接DE,EF,证明:DF是AE的垂直平分线,AD=DE,AF=EF,DEA=DAE,FAE=FEA,AE平
21、分BAC,DAE=FAE,DEA=DAE=FAE,FEA=FAE=DAE,DEAF,EFAD,四边形ADEF为平行四边形,AD=DE,四边形ADEF为菱形,如图,则菱形ADEF就是所求作的图形【点睛】本题考查尺规作菱形,基本作图角平分线,线段垂直平分线,掌握尺规作菱形的方法,基本作图角平分线,线段垂直平分线,菱形判定是解题关键4、(1);(2)见解析【分析】(1)根据30角所对直角边等于斜边的一半,得到AD=3,根据等腰直角三角形,得到CD=AD=3,根据勾股定理,得到AC的长即可;(2)根据斜边上的中线等于斜边的一半,得到DE=DC,根据等腰三角形三线合一性质,证明即可【详解】(1),;(2
22、)连接DE,【点睛】本题考查了30角的性质,等腰直角三角形的性质,斜边上中线的性质,等腰三角形三线合一性质,熟练掌握性质是解题的关键5、(1)见解析;(2)t1或或;(3)存在,PAE是直角三角形时t或【分析】(1)根据平行线的性质可得PDCBCD,根据角平分线的定义可得PCDBCD,则PCDPDC,即可得到PCPD;(2)分当BPBC4cm时,当PCBC4cm时,当PCPB时三种情况讨论求解即可;(3)分当PAE90时,当APE90时,当AEP90时,三种情况讨论求解即可【详解】解:(1)lBC,PDCBCD,CD平分BCP,PCDBCD,PCDPDC,PCPD;(2)在ABC中,ACB90
23、,若PBC是等腰三角形,存在以下三种情况:当BPBC4cm时,作PHBC于H,ACB90,lBC,ACH=CAP=90,四边形ACHP是矩形,PHAC3cm,由勾股定理 ,即,解得,当PCBC4cm时,由勾股定理,即,解得;当PCPB时,P在BC的垂直平分线上,CHBC2cm,同理可得APCH2cm,即2t2,解得t1,综上所述,当t1或或时,PBC是等腰三角形;(3)D关于射线CP的对称点是点E,PDPE,ECP=DCP,由(1)知,PDPC,PCPE,要使PAE是直角三角形,则存在以下三种情况:当PAE90时,此时点C、A、E在一条直线上,且AEAC3cm,CD平分BCP,ECP=DCP=BCD,ACPACB30,即,即2t,解得;当APE90时,EPD=90D、E关于直线CP对称,EPF=DPF=45,APC=DPF=45,lBC,CAP=180-ACB=90,ACP=45,AP=AC=3cm,; 当AEP90时,在RtACP中,PCAP,在RtAEP中,APPE,PCPEPD,故此情况不存在,综上,PAE是直角三角形时或【点睛】本题主要考查了轴对称的性质,角平分线的定义,平行线的性质,等腰三角形的性质,勾股定理,矩形的性质与判定,含30度角的直角三角形的性质,勾股定理等等,解题的关键在于能够利用分类讨论的思想求解