《2021-2022学年人教版八年级数学下册第十八章-平行四边形定向测评练习题(含详解).docx》由会员分享,可在线阅读,更多相关《2021-2022学年人教版八年级数学下册第十八章-平行四边形定向测评练习题(含详解).docx(33页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、人教版八年级数学下册第十八章-平行四边形定向测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在ABC中,点E,F分别是AB,AC的中点已知B55,则AEF的度数是()A75B60C55D402、
2、如图,长方形纸片ABCD中,AB=3cm,AD=9cm,将此长方形纸片折叠,使点D与点B重合,点C落在点H的位置,折痕为EF,则ABE的面积为( )A6cm2B8cm2C10cm2D12cm23、菱形ABCD的对角线AC,BD相交于点O,E,F分别是AD,CD边上的中点,连接EF若EF,BD2,则菱形ABCD的面积为( )A2BC6D84、如图,阴影部分是将一个菱形剪去一个平行四边形后剩下的,要想知道阴影部分的周长,需要测量一些线段的长,这些线段可以是( )AAFBABCAB与BCDBC与CD5、已知直线,点P在直线l上,点,点,若是直角三角形,则点P的个数有( )A1个B2个C3个D4个6、
3、在RtABC中,C90,若D为斜边AB上的中点,AB的长为10,则DC的长为( )A5B4C3D27、如图,把矩形纸片沿对角线折叠,若重叠部分为,那么下列说法错误的是( )A是等腰三角形B和全等C折叠后得到的图形是轴对称图形D折叠后和相等8、四边形四条边长分别是a,b,c,d,其中a,b为对边,且满足,则这个四边形是( )A任意四边形B平行四边形C对角线相等的四边形D对角线垂直的四边形9、如图所示,公路AC、BC互相垂直,点M为公路AB的中点,为测量湖泊两侧C、M两点间的距离,若测得AB的长为6km,则M、C两点间的距离为()A2.5kmB4.5kmC5kmD3km10、如图,在矩形ABCD中
4、,点O为对角线BD的中点,过点O作线段EF交AD于F,交BC于E,OBEB,点G为BD上一点,满足EGFG,若DBC30,则OGE的度数为()A30B36C37.5D45第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、一个三角形三边长之比为456,三边中点连线组成的三角形的周长为30cm,则原三角形最大边长为_cm2、如图,点E,F在正方形ABCD的对角线AC上,AC10,AECF3,则四边形BFDE的面积为 _3、如图,在等腰OAB中,OAOB2,OAB90,以AB为边向右侧作等腰RtABC,则OC的长为 _4、平面直角坐标系中,四边形ABCD的顶点坐标分别是A(3,
5、0),B(0,2),C(3,0),D(0,2),则四边形ABCD是_5、如图,在ABCD中,BC3,CD4,点E是CD边上的中点,将BCE沿BE翻折得BGE,连接AE,A、G、E在同一直线上,则AG_,点G到AB的距离为_三、解答题(5小题,每小题10分,共计50分)1、如图,在平行四边形ABCD中,点E、F分别是BC、AD的中点(1)求证:;(2)当时,在不添加辅助线的情况下,直接写出图中等于的2倍的所有角2、综合与实践(1)如图1,在正方形ABCD中,点M、N分别在AD、CD上,若MBN45,则MN,AM,CN的数量关系为 (2)如图2,在四边形ABCD中,BCAD,ABBC,A+C180
6、,点M、N分别在AD、CD上,若MBNABC,试探索线段MN、AM、CN有怎样的数量关系?请写出猜想,并给予证明(3)如图3,在四边形ABCD中,ABBC,ABC+ADC180,点M、N分别在DA、CD的延长线上,若MBNABC,试探究线段MN、AM、CN的数量关系为 3、在RtABC中,ACB90,ACBC,点D为AB边上一点,过点D作DEAB,交BC于点E,连接AE,取AE的中点P,连接DP,CP(1)观察猜想: 如图(1),DP与CP之间的数量关系是 ,DP与CP之间的位置关系是 (2)类比探究: 将图(1)中的BDE绕点B逆时针旋转45,(1)中的结论是否仍然成立?若成立,请就图(2)
7、的情形给出证明;若不成立,请说明理由(3)问题解决: 若BC3BD3, 将图(1)中的BDE绕点B在平面内自由旋转,当BEAB时,请直接写出线段CP的长4、D、分别是不等边三角形即的边、的中点是平面上的一动点,连接、,、分别是、的中点,顺次连接点、(1)如图,当点在内时,求证:四边形是平行四边形;(2)若四边形是菱形,点所在位置应满足什么条件?(直接写出答案,不需说明理由)5、如图,ABC为等边三角形,点D为线段BC上一点,将线段AD以点A为旋转中心顺时针旋转60得到线段AE,连接BE,点D关于直线BE的对称点为F,BE与DF交于点G,连接DE,EF(1)求证:BDF30(2)若EFD45,A
8、C+1,求BD的长;(3)如图2,在(2)条件下,以点D为顶点作等腰直角DMN,其中DNMN,连接FM,点O为FM的中点,当DMN绕点D旋转时,求证:EO的最大值等于BC-参考答案-一、单选题1、C【解析】【分析】证EF是ABC的中位线,得EFBC,再由平行线的性质即可求解【详解】解:点E,F分别是AB,AC的中点,EF是ABC的中位线,EFBC,AEF=B=55,故选:C【点睛】本题考查了三角形中位线定理以及平行线的性质;熟练掌握三角形中位线定理,证出EFBC是解题的关键2、A【解析】【分析】根据折叠的条件可得:,在中,利用勾股定理就可以求解【详解】将此长方形折叠,使点与点重合,根据勾股定理
9、得:,解得:故选:A【点睛】本题考查了利用勾股定理解直角三角形,掌握直角三角形两直角边的平方和等于斜边的平方是解题的关键3、A【解析】【分析】根据中位线定理可得对角线AC的长,再由菱形面积等于对角线乘积的一半可得答案【详解】解:E,F分别是AD,CD边上的中点,EF=,AC=2EF=2,又BD=2,菱形ABCD的面积S=ACBD=22=2,故选:A【点睛】本题主要考查菱形的性质与中位线定理,熟练掌握中位线定理和菱形面积公式是关键4、A【解析】【分析】如图,延长,交于点,证明,再利用菱形的性质证明:阴影部分的周长,从而可得答案【详解】解:如图,延长,交于点,四边形是平行四边形,四边形是菱形,阴影
10、部分的周长,故需要测量的长度,故选A【点睛】本题考查的是平行四边形的性质,菱形的性质,证明阴影部分的周长是解本题的关键5、C【解析】【分析】分别讨论,三种情况,求出点坐标即可得出答案【详解】如图,当时,点与点横坐标相同,代入中得:,当时,点与点横坐标相同,代入中得:,当时,取中点为点,过点作交于点,设,在中,解得:,点有3个故选:C【点睛】本题考查直角三角形的性质与平面直角坐标系,掌握分类讨论的思想是解题的关键6、A【解析】【分析】利用直角三角形斜边的中线的性质可得答案【详解】解:C=90,若D为斜边AB上的中点,CD=AB,AB的长为10,DC=5,故选:A【点睛】此题主要考查了直角三角形斜
11、边的中线,关键是掌握在直角三角形中,斜边上的中线等于斜边的一半7、D【解析】【分析】根据题意结合图形可以证明EB=ED,进而证明ABECDE;此时可以判断选项A、B、D是成立的,问题即可解决【详解】解:由题意得:BCDBFD,DC=DF,C=F=90;CBD=FBD,又四边形ABCD为矩形,A=F=90,DEBF,AB=DF,EDB=FBD,DC=AB,EDB=CBD,EB=ED,EBD为等腰三角形;在ABE与CDE中,ABECDE(HL);又EBD为等腰三角形,折叠后得到的图形是轴对称图形;综上所述,选项A、B、C成立,不能证明D是正确的,故说法错误的是D,故选:D【点睛】本题主要考查了翻折
12、变换及其应用问题;解题的关键是灵活运用翻折变换的性质,找出图中隐含的等量关系;借助矩形的性质、全等三角形的判定等几何知识来分析、判断、推理或解答8、B【解析】【分析】根据完全平方公式分解因式得到a=b,c=d,利用边的位置关系得到该四边形的形状【详解】解:,a=b,c=d,四边形四条边长分别是a,b,c,d,其中a,b为对边,c、d是对边,该四边形是平行四边形,故选:B【点睛】此题考查了完全平方公式分解因式,平行四边形的判定方法,熟练掌握完全平方公式分解因式是解题的关键9、D【解析】【详解】根据直角三角形斜边上的中线性质得出CMAB,即可求出CM【解答】解:公路AC,BC互相垂直,ACB90,
13、M为AB的中点,CMAB,AB6km,CM3km,即M,C两点间的距离为3km,故选:D【点睛】本题考查了直角三角形的性质,解题关键是掌握直角三角形斜边上的中线的性质:直角三角形斜边上的中线等于斜边的一半10、C【解析】【分析】根据矩形和平行线的性质,得;根据等腰三角形和三角形内角和性质,得;根据全等三角形性质,通过证明,得;根据直角三角形斜边中线、等腰三角形、三角形内角和性质,推导得,再根据余角的性质计算,即可得到答案【详解】矩形ABCD OBEB, 点O为对角线BD的中点, 和中 EGFG,即 故选:C【点睛】本题考查了矩形、平行线、全等三角形、等腰三角形、三角形内角和、直角三角形的知识;
14、解题的关键是熟练掌握矩形、全等三角形、等腰三角形、直角三角形斜边中线的性质,从而完成求解二、填空题1、24【解析】【分析】由三边长之比得到三角形的三条中位线之比,再由这三条中位线组成的三角形周长求出三中位线长,推出边长,再比大小判断即可【详解】 如图,H、I、J分别为BC,AC,AB的中点,又AB:AC:BC=4:5:6,即BC边最长故填24【点睛】本题考查了三角形中位线的性质,即三角形的中位线平行于第三边且等于第三边的一半2、20【解析】【分析】连接BD,交AC于O,根据题意和正方形的性质可求得EF=4,ACBD,由即可求解【详解】解:如图,连接BD,交AC于O,四边形ABCD是正方形,AC
15、10,ACBD10,ACBD,OAOCOBOD5,AECF3,EOFO2,EF=EO+FO=4, 故答案为:20【点睛】本题主要考查了正方形的性质,熟练掌握正方形的对角线相等且互相垂直平分是解题的关键3、2或2# 或【解析】【分析】如图1,以AB为斜边作等腰RtABC,根据等腰直角三角形的性质得到OAB=ABO=45,CAB=CBA=45,ACB=90,推出四边形AOBC是正方形,根据勾股定理得到OC=AB;如图2,以AB为直角边作等腰RtABC,求得ABC=45,根据等腰直角三角形的性质得到ABO=45,根据勾股定理得到BC,于是得到结论【详解】解:如图1,以AB为斜边作等腰RtABC,OA
16、OB2,OAB90,OABABO45,ABC是等腰直角三角形,CABCBA45,ACB90,AOBOACACBCBO90,四边形AOBC是正方形,OCAB2;如图2,以AB为直角边作等腰RtABC,ABC45,OAOB2,OAB90,ABO45,AB2,CBO90,ABC是等腰直角三角形,BC4,OC,当以AB、BC为直角边作等腰直角三角形时,与图2的解法相同;综上所述,OC的长为2或2,故答案为:2或2【点睛】本题考查了勾股定理,等腰直角三角形以及正方形的判定,正确的作出图形,进行分类讨论是解题的关键4、菱形【解析】【分析】先在坐标系中画出四边形ABCD,由A、B、C、D的坐标即可得到OA=
17、OC=3,OB=OD=2,再由ACBD,即可得到答案【详解】解:图象如图所示:A(-3,0)、B(0,2)、C(3,0)、D(0,-2),OA=OC=3,OB=OD=2,四边形ABCD为平行四边形,ACBD,四边形ABCD为菱形,故答案为:菱形【点睛】本题主要考查了菱形的判定,坐标与图形,解题的关键在于能够熟练掌握菱形的判定条件5、 2 #【解析】【分析】根据折叠性质和平行四边形的性质可以证明ABGEAD,可得AG=DE=2,然后利用勾股定理可得求出AF的长,进而可得GF的值【详解】解:如图,GFAB于点F,点E是CD边上的中点,CE=DE=2,由折叠可知:BGE=C,BC=BG=3,CE=G
18、E=2,在ABCD中,BC=AD=3,BCAD,D+C=180,BG=AD,BGE+AGB=180,AGB=D,ABCD,BAG=AED,在ABG和EAD中,ABGEAD(AAS),AG=DE=2,AB=AE=AG+GE=4,GFAB于点F,AFG=BFG=90,在RtAFG和BFG中,根据勾股定理,得AG2-AF2=BG2-BF2,即22-AF2=32-(4-AF)2,解得AF=,GF2=AG2-AF2=4-=,GF=,故答案为2,【点睛】本题考查了折叠的性质、平行四边形的性质、勾股定理等知识,证明ABGEAD是解题的关键三、解答题1、(1)证明见解析;(2)【分析】(1)先证明再证明从而可
19、得结论;(2)证明是等边三角形,再分别求解 从而可得答案.【详解】证明(1) 平行四边形ABCD中, 点E、F分别是BC、AD的中点, (2) , 是等边三角形, 四边形是平行四边形, 而 ,所以等于的2倍的角有:【点睛】本题考查的是全等三角形的判定与性质,等边三角形的判定与性质,平行四边形的性质,证明“是等边三角形”是解(2)的关键.2、(1)MN=AM+CN;(2)MN=AM+CN,理由见解析;(3)MN=CN-AM,理由见解析【分析】(1)把ABM绕点B顺时针旋转使AB边与BC边重合,则AM=CM,BM=BM,A=BCM,ABM=MBC,可得到点M、C、N三点共线,再由MBN=45,可得
20、MBN=MBN,从而证得NBMNBM,即可求解;(2)把ABM绕点B顺时针旋转使AB边与BC边重合,则AM=CM,BM=BM,A=BCM,ABM=MBC,由A+C180,可得点M、C、N三点共线,再由MBNABC,可得到MBN=MBN,从而证得NBMNBM,即可求解;(3)在NC上截取C M=AM,连接B M,由ABC+ADC180,可得BAM=C,再由ABBC,可证得ABMCB M,从而得到AM=C M,BM=B M,ABM=CB M,进而得到MA M=ABC,再由MBNABC,可得MBNMBN,从而得到NBMNBM,即可求解【详解】解:(1)如图,把ABM绕点B顺时针旋转使AB边与BC边重
21、合,则AM=CM,BM=BM,A=BCM,ABM=MBC,在正方形ABCD中,A=BCD=ABC=90,AB=BC ,BCM+BCD=180,点M、C、N三点共线,MBN=45,ABM+CBN=45,MBN=MBC+CBN=ABM+CBN=45,即MBN=MBN,BN=BN,NBMNBM,MN= MN,MN= MC+CN,MN= MC+CN=AM+CN;(2)MN=AM+CN;理由如下:如图,把ABM绕点B顺时针旋转使AB边与BC边重合,则AM=CM,BM=BM,A=BCM,ABM=MBC,A+C180,BCM+BCD=180,点M、C、N三点共线,MBNABC,ABM+CBN=ABCMBN,
22、CBN+MBC =MBN,即MBN=MBN,BN=BN,NBMNBM,MN= MN,MN= MC+CN,MN= MC+CN=AM+CN;(3)MN=CN-AM,理由如下:如图,在NC上截取C M=AM,连接B M,在四边形ABCD中,ABC+ADC180,C+BAD=180,BAM+BAD=180,BAM=C,ABBC,ABMCB M,AM=C M,BM=B M,ABM=CB M,MA M=ABC,MBNABC,MBNMA M=MBN,BN=BN,NBMNBM,MN= MN,MN=CN-C M, MN=CN-AM故答案是:MN=CN-AM【点睛】本题主要考查了正方形的性质,全等三角形的性质和判
23、定,图形的旋转,根据题意做适当辅助线,得到全等三角形是解题的关键3、(1)PDPC,PDPC;(2)成立,见解析;(3)2或4【分析】(1)根据直角三角形斜边中线的性质,可得,根据角之间的关系即可,即可求解;(2)过点P作PTAB交BC的延长线于T,交AC于点O,根据全等三角形的判定与性质求解即可;(3)分两种情况,当点E在BC的上方时和当点E在BC的下方时,过点P作PQBC于Q,利用等腰直角三角形的性质求得,即可求解【详解】解:(1)ACB90,ACBC,点P为AE的中点,故答案为:,(2)结论成立理由如下:过点P作PTAB交BC的延长线于T,交AC于点O则,由勾股定理可得:点P为AE的中点
24、,在中,(3)如图31中,当点E在BC的上方时,过点P作PQBC于Q则,由(2)可得,为等腰直角三角形由勾股定理得,如图32中,当点E在BC的下方时,同法可得PCPD2综上所述,PC的长为4或2【点睛】此题考查了等腰直角三角形的性质,全等三角形的判定与性质,勾股定理,解题的关键是熟练掌握相关基本性质,做辅助线,构造出全等三角形4、(1)见解析;(2),且点不在射线、射线上【分析】(1)根据三角形的中位线定理可证得,DEGF,即可证得结论;(2)根据三角形的中位线定理结合菱形的判定方法分析即可【详解】(1)D、E分别是边AB、AC的中点,DEBC,同理,GFBC,DEGF,四边形DEFG是平行四
25、边形;(2)点O的位置满足两个要求:AOBC,且点O不在射线CD、射线BE上理由如下:连接AO,由(1)得四边形DEFG是平行四边形,点D、G、F分别是AB、OB、OC的中点,当AOBC时,GF=DF,四边形DGFE是菱形【点睛】本题主要考查三角形的中位线定理,平行四边形、菱形的判定,解题的关键是熟练掌握以上知识点5、(1)见解析;(2)2;(3)见解析【分析】(1)由ABC是等边三角形,可得ABC=60,由D、F关于直线BE对称,得到BF=BD,则BFD=BDF,由三角形外角的性质得到BFD+BDF=ABD,则BDF=BFD=30;(2)设,由D、F关于直线BE对称,得到BGD=BGF=90
26、,EF=ED,EG=DG,由含30度角的直角三角形的性质和勾股定理得,证明EABDAC得到,再由,得到,由此求解即可;(3)连接OG,先求出,证明OG是三角形DMF的中位线,得到,再根据两点之间线段最短可知,则OE的最大值等于BC【详解】解:(1)ABC是等边三角形,ABC=60,D、F关于直线BE对称,BF=BD,BFD=BDF,BFD+BDF=ABD,BDF=BFD=30;(2)设,D、F关于直线BE对称,BGD=BGF=90,EF=ED,EDG=EFG=45,EG=DG,BDG=30,由旋转的性质可得AE=AD,EAD=BAC=60,EAB+BAD=CAD+BAD,即EAB=DAC,又AB=AC,EABDAC(SAS),;(3)如图所示,连接OG,在等腰直角三角形DMN中,D、F关于直线BE对称,G为DF的中点,又O为FM的中点,OG是三角形DMF的中位线,由(2)可得,根据两点之间线段最短可知,OE的最大值等于BC【点睛】本题主要考查了等边三角形的性质,轴对称的性质,全等三角形的性质与判定,勾股定理,含30度角的直角三角形性质,三角形中位线定理,两点之间线段最短等等,解题的关键在于能够熟练掌握轴对称的性质和等边三角形的性质