《真题汇总2022年河北省石家庄裕华区中考数学三年高频真题汇总-卷(Ⅲ)(精选).docx》由会员分享,可在线阅读,更多相关《真题汇总2022年河北省石家庄裕华区中考数学三年高频真题汇总-卷(Ⅲ)(精选).docx(23页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、 线 封 密 内 号学级年名姓 线 封 密 外 2022年河北省石家庄裕华区中考数学三年高频真题汇总 卷() 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列图形中,既是轴对称图形,又是中心对称图形的是
2、( )ABCD2、如图,将三角形绕点A旋转到三角形,下列说法正确的个数有( )(1);(2);(3);(4)A1个B2个C3个D4个3、下列解方程的变形过程正确的是( )A由移项得:B由移项得:C由去分母得:D由去括号得:4、在O中,AB为直径,点C为圆上一点,将劣弧沿弦AC翻折交AB于点D,连结CD如图,若点D与圆心O不重合,BAC25,则DCA的度数()A35B40C45D655、不等式1”“=”或“”)2、若a、b互为相反数,c、d互为倒数,m的绝对值是1,则3a+3b -mcd=_.3、已知与互为相反数,则的值是_4、的最简公分母是_5、实数a、b互为相反数,c、d互为倒数,x的绝对值
3、为,则=_三、解答题(5小题,每小题10分,共计50分)1、已知二次函数的图象经过两点(1)求a和b的值;(2)在坐标系中画出该二次函数的图象2、定义:当时,其对应的函数值为,若成立,则称a为函数y的不动点例如:函数,当时,因为成立,所以2为函数y 线 封 密 内 号学级年名姓 线 封 密 外 的不动点对于函数,(1)当时,分别判断1和0是否为该函数的不动点,并说明理由;(2)若函数有且只有一个不动点,求此时t的值;(3)将函数图像向下平移个单位长度,时,判断平移后函数不动点的个数3、某商场销售一种小商品,进货价为8元/件当售价为10元/件时,每天的销售量为100件在销售过程中发现:销售单价每
4、上涨1元,每天的销售量就减少10件设销售单价为(元/件)(的整数),每天销售利润为(元)(1)直接写出与的函数关系式为:_;(2)若要使每天销售利润为270元,求此时的销售单价;(3)若每件该小商品的利润率不超过100%,且每天的进货总成本不超过800元,求该小商品每天销售利润的取值范围4、已知:二次函数yx21(1)写出此函数图象的开口方向、对称轴、顶点坐标;(2)画出它的图象5、直播购物逐渐走进了人们的生活,某电商在抖音上对一款成本价为40元的小商品进行直播销售,如果按每件60元销售,每天可卖出20件,通过市场调查发现,每件小商品售价每降低5元,日销售量增加10件,若将每件商品售价定为x元
5、,日销售量设为y件(1)求y与x的函数表达式;(2)当x为多少时,每天的销售利润最大?最大利润是多少?-参考答案-一、单选题1、C【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解【详解】解:A是轴对称图形,不是中心对称图形,故本选项不符合题意;B不是轴对称图形,是中心对称图形,故本选项不符合题意;C是轴对称图形,也是中心对称图形,故本选项符合题意;D是轴对称图形,不是中心对称图形,故本选项不符合题意故选:C【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合2、C【分析】
6、图形旋转前后的对应边相等,对应角相等,根据旋转的性质解答【详解】解:据旋转的性质,可知:,故(1)错误;,故(2)正确;,故(3)正确;,故(4)正确故选:C【点睛】 线 封 密 内 号学级年名姓 线 封 密 外 此题考查旋转的性质:图形旋转前后的对应边相等,对应角相等,熟记性质是解题的关键3、D【分析】对于本题,我们可以根据解方程式的变形过程逐项去检查,必须符合变形规则,移项要变号【详解】解析:A由移项得:,故A错误;B由移项得:,故B错误;C.由去分母得:,故C错误;D.由去括号得: 故D正确故选:D【点睛】本题主要考查了解一元一次方程变形化简求值,解题关键是:必须熟练运用移项法则4、B【
7、分析】首先连接BC,由AB是直径,可求得ACB=90,则可求得B的度数,然后由翻折的性质可得,弧AC所对的圆周角为B,弧ABC所对的圆周角为ADC,继而求得答案【详解】连接BC,AB是直径,ACB=90,BAC=25,B=90BAC=9025=65,根据翻折的性质,弧AC所对的圆周角为B,弧ABC所对的圆周角为ADC,ADC+B=180,B=CDB=65,DCA=CDBA=6525=40.故选B.【点睛】本题考查圆周角定理,连接BC是解题的突破口.5、A【分析】先求出不等式组的解集,再求不等式组的整数解【详解】去分母得:x7+23x2,移项得:2x3,解得:x故负整数解是1,共1个故选A【点睛
8、】本题考查了不等式的解法,并会根据未知数的范围确定它所满足的特殊条件的值一般方法是先解不等式,再根据解集求其特殊值6、C【分析】 线 封 密 内 号学级年名姓 线 封 密 外 首先依据非负数的性质求得a,b的值,然后得到三角形的三边长,接下来,利用三角形的三边关系进行验证,最后求得三角形的周长即可【详解】解:根据题意得,a40,b50,解得a4,b5,4是腰长时,三角形的三边分别为4、4、5,4+485,能组成三角形,周长4+4+513,4是底边时,三角形的三边分别为4、5、5,能组成三角形,周长4+5+514,所以,三角形的周长为13或14故选C【点睛】本题主要考查的是非负数的性质、等腰三角
9、形的定义,三角形的三边关系,利用三角形的三边关系进行验证是解题的关键7、B【分析】连接OB首先根据反比例函数的比例系数k的几何意义,得出SAOE=SCOF=1.5,然后由三角形任意一边的中线将三角形的面积二等分及矩形的对角线将矩形的面积二等分,得出F是BC的中点,则SBEF=SOCF=0.75,最后由SOEF=S矩形AOCBSAOESCOFSBEF,得出结果【详解】连接OBE、F是反比例函数y=(x0)图象上的点,EAx轴于A,FCy轴于C,SAOE=SCOF=1.5矩形OABC边AB的中点是E,SBOE=SAOE=1.5,SBOC=SAOB=3,SBOF=SBOCSCOF=31.5=1.5,
10、F是BC的中点,SOEF=S矩形AOCBSAOESCOFSBEF=61.51.50.51.5=故选B【点睛】本题主要考查了反比例函数的比例系数k与其图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系,即S=|k|得出点F为BC的中点是解决本题的关键8、B【分析】根据正方形的性质分别求出DE,EF,根据勾股定理求出DF,根据圆的面积公式计算【详解】解:正方形A的面积是64,正方形B的面积是100,由勾股定理得,半圆C的面积,故选B 线 封 密 内 号学级年名姓 线 封 密 外 【点睛】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么9
11、、C【分析】一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值即用这个数代替未知数所得式子仍然成立【详解】把x=2代入方程x2=c可得:c=4故选C【点睛】本题考查的是一元二次方程的根即方程的解的定义10、C【分析】根据补角的定义进行分析即可.【详解】解:A+B90,B+C180,CA90,即C比A大90,故选C【点睛】考核知识点:补角.理解补角的数量关系是关键.二、填空题1、【分析】连接AE,先证明得出,根据三角形三边关系可得结果【详解】如图,连接,在和中,在中,F是边上的中点, 线 封 密 内 号学级年名姓 线 封 密 外 故答案为:0时开口向上;顶点式可直接求得
12、其顶点坐标为(h,k)及对称轴x=h;(2)可分别求得抛物线顶点坐标以及抛物线与x轴、y轴的交点坐标,利用描点法可画出函数图象(1)解:(1)二次函数yx21,抛物线的开口方向向上,顶点坐标为(0,1),对称轴为y轴;(2)解:在yx21中,令y0可得x21=0解得x1或1,所以抛物线与x轴的交点坐标为(-1,0)和(1,0);令x0可得y1,所以抛物线与y轴的交点坐标为(0,-1);又顶点坐标为(0,1),对称轴为y轴,再求出关于对称轴对称的两个点,将上述点列表如下:x-2-1012yx2130-103描点可画出其图象如图所示:【点睛】本题考察了二次函数的开口方向、对称轴以及顶点坐标以及二次
13、函数抛物线的画法解题的关键是把二次函数的一般式化为顶点式描点画图的时候找到关键的几个点,如:与x轴的交点与y轴的交点以及顶点的坐标5、(1)(2)x为55时,每天的销售利润最大,最大利润是450元 线 封 密 内 号学级年名姓 线 封 密 外 【分析】(1)原销售量20加上增加的件数即可得到函数表达式;(2)由每件利润乘以销售量得到利润的函数关系式,化为顶点式,利用函数性质解答(1)解: 件;(2)解:设每个月的销售利润为w元依题意,得:整理,得:,化成顶点式,得当x为55时每天的销售利润最大,最大利润是450元【点睛】此题考查了二次函数的实际应用,正确理解题意列出函数关系式,并掌握将二次函数化为顶点式利用函数的性质求最值是解题的关键