《真题汇总2022年河北省石家庄裕华区中考数学历年真题练习-(B)卷(含答案详解).docx》由会员分享,可在线阅读,更多相关《真题汇总2022年河北省石家庄裕华区中考数学历年真题练习-(B)卷(含答案详解).docx(29页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、 线 封 密 内 号学级年名姓 线 封 密 外 2022年河北省石家庄裕华区中考数学历年真题练习 (B)卷 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在ABC中,C=20,将ABC绕点A顺时针旋
2、转60得到ADE,AE与BC交于点F,则AFB的度数是()ABCD2、某种速冻水饺的储藏温度是,四个冷藏室的温度如下,不适合储藏此种水饺是( )ABCD3、计算12a2b4()()的结果等于( )A9aB9aC36aD36a4、如图,在O中,直径CD弦AB,则下列结论中正确的是AAC=ABBC=BODCC=BDA=B0D5、如果单项式2a2m5bn+2与ab3n2的和是单项式,那么m和n的取值分别为()A2,3B3,2C3,2D3,26、已知A与B的和是90,C与B互为补角,则C比A大()A180B135C90D457、观察下列算式,用你所发现的规律得出的个位数字是( ),A2B4C6D88、
3、在中,那么的值等于( )ABCD9、化简的结果是( )A1BCD10、不等式组的解集在数轴上表示正确的是() 线 封 密 内 号学级年名姓 线 封 密 外 ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、关于x的一元二次方程(m5)x2+2x+2=0有实根,则m的最大整数解是_2、若,则_.3、数学组活动,老师带领学生去测塔高,如图,从点测得塔顶的仰角为,测得塔基的仰角为,已知塔基高出测量仪,(即),则塔身的高为_米4、a是不为1的数,我们把称为a的差倒数,如:2的差倒数为;的差倒数是;已知是的差倒数,是的差倒数,是的差倒数,依此类推,则_5、如图,在ABC中,
4、BC=3cm,BAC=60,那么ABC能被半径至少为 cm的圆形纸片所覆盖三、解答题(5小题,每小题10分,共计50分)1、如图,在平面直角坐标系中,抛物线与直线交于,两点,其中,(1)求该抛物线的函数表达式;(2)点,为直线下方抛物线上任意两点,且满足点的横坐标为,点的横坐标为,过点和点分别作轴的平行线交直线于点和点,连接,求四边形面积的最大值;(3)在(2)的条件下,将抛物线沿射线平移个单位,得到新的抛物线,点为点的对应点,点为的对称轴上任意一点,点为平面直角坐标系内一点,当点,构成以为边的菱形时,直接写出所有符合条件的点的坐标,并任选其中一个点的坐标,写出求解过程2、解方程:(1)(2)
5、3、如图,将边长为4的正方形纸片ABCD折叠,使点A落在边CD上的点M处(不与点C、D重合),连接AM,折痕EF分别交AD、BC、AM于点E、F、H,边AB折叠后交边BC于点G(1)求证:EDMMCG;(2)若DMCD,求CG的长; 线 封 密 内 号学级年名姓 线 封 密 外 (3)若点M是边CD上的动点,四边形CDEF的面积S是否存在最值?若存在,求出这个最值;若不存在,说明理由4、如图,在一条不完整的数轴上,从左到右的点,把数轴分成四部分,点,对应的数分别是,已知(1)原点在第 部分;(2)若,求的值;(3)在(2)的条件下,数轴上一点表示的数为,若,直接写出的值5、如图,直线与x,y轴
6、分别交于点B,A,抛物线过点A(1)求出点A,B的坐标及c的值;(2)若函数在时有最小值为,求a的值;(3)当时,在抛物线上是否存在点M,使得SABM=1,若存在,请直接写出所有符合条件的点M的坐标;若不存在,请说明理由-参考答案-一、单选题1、C【分析】先根据旋转的性质得CAE=60,再利用三角形内角和定理计算出AFC=100,然后根据邻补角的定义易得AFB=80【详解】ABC绕点A顺时针旋转60得ADE, CAE=60, C=20, AFC=100, AFB=80 故选C【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等
7、2、B【分析】根据有理数的加减运算,可得温度范围,根据温度范围,可得答案【详解】 线 封 密 内 号学级年名姓 线 封 密 外 解:-18-2=-20,-18+2=-16,温度范围:-20至-16,故选:B【点睛】本题考查了正数和负数,有理数的加法运算是解题关键,先算出适合温度的范围,再选出不适合的温度3、D【分析】通过约分化简进行计算即可.【详解】原式=12a2b4()()=36a.故选D.【点睛】本题考点:分式的化简.4、B【分析】先利用垂径定理得到弧AD=弧BD,然后根据圆周角定理得到C=BOD,从而可对各选项进行判断【详解】解:直径CD弦AB,弧AD =弧BD,C=BOD故选B【点睛】
8、本题考查了垂径定理和圆周角定理,垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半5、B【分析】根据题意可知单项式2a2m5bn+2与ab3n2是同类项,结合同类项的定义中相同字母的指数也相同的条件,可得方程组,解方程组即可求得m,n的值【详解】解:根据题意,得解得m3,n2故选:B【点睛】同类项的定义是所含有的字母相同,并且相同字母的指数也相同的项叫同类项6、C【分析】根据补角的定义进行分析即可.【详解】解:A+B90,B+C180, 线 封 密 内 号学级年名姓 线 封 密 外 CA90,即C比A
9、大90,故选C【点睛】考核知识点:补角.理解补角的数量关系是关键.7、D【分析】通过观察算式可以发现规律:左边是指数从1开始以2为底数的乘方,右边是个位数字,以2,4,8,6交替出现,也就是4个数为一个周期3,所以的个位数字应该与的个位数字相同,所以的个位数字是8【详解】解:通过观察算式可以发现规律:左边是指数从1开始以2为底数的乘方,右边是个位数字,以2,4,8,6交替出现,也就是4个数为一个周期3,所以的个位数字应该与的个位数字相同,所以的个位数字是8故选D【点睛】本题主要考查了数字类的规律问题,解题的关键在于能够准确找到相关规律8、A【解析】【分析】根据A+B=90得出cosB=sinA
10、,代入即可【详解】C=90,sinA=又A+B=90,cosB=sinA=故选A【点睛】本题考查了互余两角三角函数的关系,注意:已知A+B=90,能推出sinA=cosB,cosA=sinB,tanA=cotB,cotA=tanB9、D【分析】括号里通分化简,然后根据除以一个数等于乘以这个数的倒数计算即可【详解】解:原式,故选:D【点睛】本题考查了分式的混合运算,熟知运算法则是解题的关键10、C【解析】【分析】先求出不等式组的解集,再在数轴上表示出来即可【详解】 线 封 密 内 号学级年名姓 线 封 密 外 解不等式得:x2,解不等式得:x1,不等式组的解集为1x2,在数轴上表示为:故选C【点
11、睛】本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,能根据不等式的解集求出不等式组的解集是解答此题的关键二、填空题1、m=4【详解】分析:若一元二次方程有实根,则根的判别式=b24ac0,建立关于m的不等式,求出m的取值范围还要注意二次项系数不为0详解:关于x的一元二次方程(m5)x2+2x+2=0有实根,=48(m5)0,且m50,解得m5.5,且m5,则m的最大整数解是m=4故答案为m=4点睛:考查了根的判别式,总结:一元二次方程根的情况与判别式的关系:(1)0,方程有两个不相等的实数根;(2)=0,方程有两个相等的实数根;(3)0方程没有实数根2、【分析】根据条件|m|=m+1
12、进行分析,m的取值可分三种条件讨论,m为正数,m为负数,m为0,讨论可得m的值,代入计算即可【详解】解:根据题意,可得m的取值有三种,分别是:当m0时,则可转换为m=m+1,此种情况不成立当m=0时,则可转换为0=0+1,此种情况不成立当m0时,则可转换为-m=m+1,解得,m=将m的值代入,则可得(4m+1)2011=4()+12011=-1故答案为:-1【点睛】本题考查了含绝对值符号的一元一次方程和代数式的求值解题时,要注意采用分类讨论的数学思想3、【分析】易得BC长,用BC表示出AC长,ACCD=AD【详解】ABC中,AC=BCBDC中有DC=BC=20,AD=ACDC=BCBC=20(
13、1)米故答案为20(1)【点睛】本题考查了仰角的定义,要求学生能借助仰角构造直角三角形并解直角三角形4、【分析】根据题意,可以写出这列数的前几个数,从而可以发现数字的变化特点,进而得到a2019的值 线 封 密 内 号学级年名姓 线 封 密 外 【详解】解:,是的差倒数,即,是的差倒数,即,是的差倒数,即,依此类推,故答案为:【点睛】本题考查数字的变化类、新定义,解答本题的关键是明确题意,发现数字的变化特点,求出所求项的值5、【分析】作圆的直径,连接,根据圆周角定理求出,根据锐角三角函数的定义得出,代入求出即可【详解】解:作圆O的直径CD,连接BD,圆周角A、D所对弧都是,D=A=60CD是直
14、径,DBC=90sinD=又BC=3cm,sin60=,解得:CD=的半径是(cm)ABC能被半径至少为cm的圆形纸片所覆盖【点睛】本题考查了圆周角定理,三角形的外接圆与外心,锐角三角函数的定义的应用,关键是利用外接圆直径构造直角三角形求半径.三、解答题1、(1)抛物线表达式为;(2)当时,S四边形PQDC最大=;(3)所有符合条件的点的坐标()或()或()或()【分析】(1)利用待定系数法求抛物线解析式抛物线过,两点,代入坐标得:,解方程组即可; 线 封 密 内 号学级年名姓 线 封 密 外 (2)根据点的横坐标为,点的横坐标为,得出,解不等式组得出,用m表示点P,点Q,用待定系数法求出AB
15、解析式为,用m表示点C,点D,利用两点距离公式求出PC=,QD=,利用梯形面积公式求出S四边形PQDC=即可;(3)根据勾股定理求出AB=,将抛物线配方,根据平移,得出抛物线向右平移4个单位,再向下平移2个单位, 求出新抛物线,根据, 求出点P,与对应点E,平移后新抛物线对称轴为,设点G坐标为,点F()分两类四种种情况,四边形BEFG为菱形,BE=EF,根据勾股定理,求出点F(),(),当点F()时,点G、F、E、B坐标满足,得出 G(),点F()时,点G3、F、E、B坐标满足, ,得出G3(),四边形BEFG为菱形,BE=BF,根据勾股定理,点F(),(),点F()时,点G1、F、E、B坐标
16、满足, ,得出 G1(),点F()时,点G2、F、E、B坐标满足,得出G2()【详解】解:(1)抛物线过,两点,代入坐标得:,解得:,抛物线表达式为;(2)点,为直线下方抛物线上任意两点,且满足点的横坐标为,点的横坐标为,解得,点P,点Q设AB解析式为,代入坐标得:,解得:,AB解析式为,点C,点DPC=,QD=S四边形PQDC=, 线 封 密 内 号学级年名姓 线 封 密 外 当时,S四边形PQDC最大=;(3)AB=,抛物线向右平移4个单位,再向下平移2个单位, ,点P,对应点E,平移后新抛物线对称轴为,设点G坐标为,点F(),分两类四种种情况,四边形BEFG为菱形,BE=EF,根据勾股定
17、理,或,点F(),(),当点F()时,点G、F、E、B坐标满足:,解得,解得,G();点F()时,点G3、F、E、B坐标满足:,解得,解得,G3();四边形BEFG为菱形,BE=BF,根据勾股定理, 线 封 密 内 号学级年名姓 线 封 密 外 ,或,点F(),(),点F()时,点G1、F、E、B坐标满足:,解得,解得,G1();点F()时,点G2、F、E、B坐标满足:,解得,解得,G2(),综合所有符合条件的点的坐标()或()或()或()【点睛】本题考查待定系数法求抛物线解析式与直线解析式,两点距离,梯形面积,二次函数顶点式最值,抛物线平移,菱形性质,图形与坐标,本题难度大,解题复杂,计算要
18、求非常准确,考查学生多方面能力,知识掌握情况,阅读,分类,数形结合,运算,画图是中考难题2、(1)(2)【分析】(1)方程去括号、移项合并同类项,把x的系数化为1,即可求出解;(2)方程去分母、去括号、移项合并同类项,把x的系数化为1,即可求出解(1)解:去括号得:移项、合并同类项得:系数化为1,得:(2)解:去分母得:去括号得:移项、合并同类项得:系数化为1,得:【点睛】 线 封 密 内 号学级年名姓 线 封 密 外 本题考查解一元一次方程,解题的关键是掌握一元一次方程的解法,解一元一次方程常见的过程有:去分母、去括号、移项、合并同类项、系数化为1等3、(1)见解析(2)2(3)存在,10【
19、分析】(1)由正方形的性质得,故,由折叠的性质得,故,推出,故可证;(2)由,得,设,则,由勾股定理即可求出的值,即可求出,由相似三角形的性质即可得出的长;(3)过点作于,根据证明,由全等三角形的性质得,设,由勾股定理求出、关系,由化为二次函数即可求出最值(1)四边形是正方形,正方形沿Z折叠,;(2)正方形的边长为4,设,则,由勾股定理得:,解得:,即,解得:;(3)如图,过点作于,四边形是矩形, 线 封 密 内 号学级年名姓 线 封 密 外 ,由折叠的性质可得:,设,即,当时,有最大值为10【点睛】本题考查几何综合题,主要涉及到折叠的性质,正方形的性质,相似三角形性的判定与性质,全等三角形的
20、判定与性质以及二次函数最值问题,属于中考压轴题,掌握相关知识点间的应用是解题的关键4、(1)(2)-3(3)-5或3【分析】(1)因为bc0,所以b,c异号,所以原点在第部分;(2)求出AB的值,然后根据点A在点B左边2个单位求出a的值;(3)先求出点C表示的数,然后分2种情况分别计算即可(1)解:,bc,b0,原点在第部分,故答案为:;(2)解:AC=5,BC=3,AB=AC-BC=5-3=2,b=-1,a=-1-2=-3;(3)解:a=-3,c=-3+5=2,OC=2,当点D在点B的左侧时, 线 封 密 内 号学级年名姓 线 封 密 外 ,-1-d=22,d=-5;当点D在点B的右侧时,d
21、-(-1)=22,d=3;若,的值是-5或3【点睛】本题考查了数轴上两点间的距离,线段的和差,有理数的乘法法则,以及一元一次方程的应用,体现了分类讨论的数学思想,做到不重不漏是解题的关键5、(1)A(0,1),B(2,0),c1(2)5或(3),【分析】(1)根据两轴的特征可求yx1与x轴,y轴的交点坐标,然后将点A坐标代入抛物线解析式即可;(2)将抛物线配方为顶点式,根据抛物线开口向上与向下两种情况,当a0,在1x4时,抛物线在顶点处取得最小值,当x1时,y有最小值, 当a0,在1x4时,离对称轴越远函数值越小,即可求解;(3)存在符合条件的M点的坐标, 当时,抛物线解析式为:,设点P在y轴
22、上,使ABP的面积为1,点P(0,m), 求出点P2(0,0),或P1(0,2),可得点M在过点P与AB平行的两条直线上,过点P2与 AB平行直线的解析式为:,联立方程组,解方程组得出,过点P1与AB平行的直线解析式为:,联立方程组,解方程组得出即可(1)解:在yx1中,令y0,得x2;令x0,得y1,A(0,1),B(2,0)抛物线yax22axc过点A,c1(2)解:yax22ax1a(x22x11)1a(x1)21a,抛物线的对称轴为x=1,当a0,在1x4时,抛物线在顶点处取得最小值,当x1时,y有最小值,此时1a4,解得a5; 当a0,在1x4时,4-1=31-(-1)=2,离对称轴
23、越远函数值越小, 线 封 密 内 号学级年名姓 线 封 密 外 当x4时,y有最小值, 此时9a1a4,解得a , 综上,a的值为5或(3)解:存在符合条件的M点的坐标,分别为,当时,抛物线解析式为:,设点P在y轴上,使ABP的面积为1,点P(0,m), ,解得,点P2(0,0),或P1(0,2),点M在过点P与AB平行的两条直线上,过点P2与 AB平行直线的解析式为:,将代入中,解得,过点P1与AB平行的直线解析式为:,将代入中,解得, , 线 封 密 内 号学级年名姓 线 封 密 外 综上所述,存在符合条件的M点的坐标,分别为,【点睛】本题考查一次函数与两轴的交点,抛物线顶点式,二次函数的最小值,平行线性质,联立方程组,三角形面积,掌握一次函数与两轴的交点,抛物线顶点式,二次函数的最小值,平行线性质,联立解方程组,三角形面积公式是解题关键