《2022年精品解析京改版九年级数学下册第二十三章-图形的变换重点解析试题(无超纲).docx》由会员分享,可在线阅读,更多相关《2022年精品解析京改版九年级数学下册第二十三章-图形的变换重点解析试题(无超纲).docx(27页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、九年级数学下册第二十三章 图形的变换重点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,ABC和ABC关于直线l对称,连接BC,BC,CC,下列结论:l垂直平分CC;BACBAC;BCCBCC;
2、直线BC和BC的交点一定在l上,其中正确的有( )A4个B3个C2个D1个2、有下列说法:轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线;等腰三角形一腰上的高与底边的夹角与顶角互余;等腰三角形顶角的平分线是它的对称轴;等腰三角形两腰上的中线相等其中正确的说法有( )个A1B2C3D43、如图,RtABC中,A90,B30,AC1,将RtABC延直线l由图1的位置按顺时针方向向右作无滑动滚动,当A第一次滚动到图2位置时,顶点A所经过的路径的长为()ABCD(2+)4、直角坐标系中,点A(-3,4)与点B(3,-4)关于( )A原点中心对称B轴轴对称C轴轴对称D以上都不对5、如图,把含30
3、的直角三角板ABC绕点B顺时针旋转至如图EBD,使BC在BE上,延长AC交DE于F,若AF8,则AB的长为()A4B4C4D66、已知点M(2,3),点N与点M关于x轴对称,则点N的坐标是()A(2,3)B(2,3)C(3,2)D(2,3)7、下列图形中,既是轴对称图形又是中心对称图形的是()ABCD8、2022年2月4日2月20日,北京冬奥会将隆重举行,如图是在北京冬奥会会徽征集过程中征集到的一幅图片旋转图片中的“雪花图案”,旋转后要与原图形重合,至少需要旋转( )A180B120C90D609、如图,线段两个端点的坐标分别为,以原点为位似中心,在第一象限内将线段缩小为原来的后得到线段,则端
4、点的坐标为( )ABCD10、如图,直径AB6的半圆,绕B点顺时针旋转30,此时点A到了点A,则图中阴影部分的面积是()ABCD3第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知,点A(a+1,2)、B(3,b-1)两点关于x轴对称,则C(a,b)的坐标是_2、已知点与点关于轴对称,则_3、小聪在研究题目“如图,在等腰三角形ABC中,的平分线与AB的垂直平分线OD交于点O,点C沿直线EF折叠后与点O重合,你能得出那些结论?”时,发现了下面三个结论:;图中没有60的角;D、O、C三点共线请你直接写出其中正确的结论序号:_4、如图,在平面直角坐标系中,有一个,ABO90
5、,AOB30,直角边OB在y轴正半轴上,点A在第一象限,且OA1,将绕原点逆时针旋转30,同时把各边长扩大为原来的两倍(即OA12OA)得到,同理,将绕原点O逆时针旋转30,同时把各边长扩大为原来的两倍,得到,依此规律,得到,则的长度为_5、如图,矩形ABCD绕点A逆时针旋转90得矩形AEFG,连接CF交AD于点P,M是CF的中点,连接AM交EF于点Q,则下列结论:AMCF;CDPAEQ;连接PQ,则PQMQ;若AE2,MQ,点P是CM中点,则PD1其中,正确结论有_(填序号)三、解答题(5小题,每小题10分,共计50分)1、如图,ABC是等边三角形,点D在AC边上,将BCD绕点C旋转得到AC
6、E(1)求证:DEBC;(2)若AB8,BD7,求ADE的周长2、如图,三角形的项点坐标分别为,(1)画出三角形关于点的中心对称的,并写出点的坐标;(2)画出三角形绕点顺时针旋转90后的,并写出点的坐标3、如图,在1010的网格中建立如图的平面直角坐标系,线段AB两个端点的坐标分别是A(1,4),B(3,1)(1)画出线段AB关于y轴对称的线段CD,则点A的对应点C的坐标是 ;(2)将线段AB先向左平移4个单位,再向下平移5个单位,画出平移后的对应线段EF,观察线段EF与DC是否关于某直线对称?若是,则对称轴是 ;E点坐标是 ;(3)ABP是以AB为直角边的格点等腰直角三角形(A,B,P三点都
7、是小正方形的顶点),则点P的坐标是 4、如图1,点O是正方形ABCD两对角线的交点,分别延长OD到点G,OC到点E,使OG2OD,OE2OC,然后以OG、OE为邻边作正方形OEFG,连结AG、DE(1)猜想AG与DE的数量关系,请直接写出结论;(2)正方形ABCD固定,将正方形OEFG绕点O逆时针旋转,旋转角为(0180),得到图2,请判断:(1)中的结论是否仍然成立?若成立,请证明;若不成立,请说明理由;(3)在正方形OEFG旋转过程中,请直接写出:当30时,OAG的度数;当AEG的面积最小时,旋转角的度数5、如图,在平面直角坐标系中、ABC的顶点坐标分别为A(4,6),B(5,2),C(2
8、,1)(1)在图中画出ABC关于点O的中心对称图形,并写出点,点,点的坐标;(2)求的面积-参考答案-一、单选题1、A【分析】根据成轴对称的两个图形能够完全重合可得ABC和ABC全等,然后对各小题分析判断后解可得到答案【详解】解:ABC和ABC关于直线L对称,l垂直平分CC;BACBAC;BCCBCC;直线BC和BC的交点一定在l上,综上所述,正确的结论有4个,故选:A【点睛】本题考查了轴对称的性质,根据成轴对称的两个图形能够完全重合判断出两个三角形全等是解题的关键2、B【分析】根据轴对称的性质,轴对称图形的概念,等腰三角形的性质判断即可【详解】解:轴对称图形的对称轴是任何一对对应点所连线段的
9、垂直平分线,说法正确;等腰三角形一腰上的高与底边的夹角与底角互余,原说法错误;等腰三角形的顶角平分线在它的对称轴上,原说法错误;等腰三角形两腰上的中线相等,说法正确综上,正确的有,共2个,故选:B【点睛】本题考查了轴对称的性质及等腰三角形的性质,掌握轴对称的性质,轴对称图形的概念,等腰三角形的性质是解题的关键3、C【分析】根据题意,画出示意图,确定出点的运动路径,再根据弧长公式即可求解【详解】解:根据题意可得,RtABC的运动示意图,如下:RtABC中,A90,B30,AC1,由图形可得,点的运动路线为,先以为中心,顺时针旋转,到达点,经过的路径长为,再以为中心,顺时针旋转,到达点,经过的路径
10、长为,顶点A所经过的路径的长为,故选:C【点睛】此题考查了旋转的性质,圆弧弧长的求解,解题的关键是根据题意确定点的运动路线4、A【分析】观察点A与点B的坐标,依据关于原点中心对称的点,横坐标与纵坐标都互为相反数可得答案【详解】根据题意,易得点(-3,4)与(3,-4)的横、纵坐标互为相反数,则这两点关于原点中心对称故选A【点睛】本题考查在平面直角坐标系中,关于原点中心对称的两点的坐标之间的关系掌握关于原点对称的点,横坐标与纵坐标都互为相反数是解答本题的关键5、C【分析】根据旋转的性质得到ABBE,AE30,设BCx,根据直角三角形的性质得到ABDE2x,根据勾股定理得到AC,根据题意列方程即可
11、得到结论【详解】解:把含30的直角三角板ABC绕点B顺时针旋转得到EBD,ABBE,AE30,ACB90,EDF90,设BCx,ABBE2x,CEx,AC,ECF90,E30,CFEF,CEx,CF,AF8,xAB2x,故选:C【点睛】本题考查了旋转的性质,含30角的直角三角形的性质,勾股定理,熟练掌握旋转的性质是解题的关键6、D【分析】根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可直接得到答案【详解】点M(2,3),点N与点M关于x轴对称,点N的坐标是(2,3),故选:D【点睛】本题考查了坐标轴中轴对称变化,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,
12、纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数7、B【分析】根据轴对称图形(一个图形沿着某一条直线折叠,如果它能够与另一个图形完全重合,称这两个图形为轴对称)和中心对称图形(指把一个图形绕着某一点旋转,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称)的概念对各选项分析判断即可得解【详解】解:A是轴对称图形,不是中心对称图形,故本选项不符合题意;B既是轴对称图形,又是中心对称图形,故本选项符合题意;C不是轴对称图形,是中心对称图形,故本选项不符合题意;D是轴对称图形,不是中心对称图形,故本选项不符合题意故选:
13、B【点睛】题目主要考查轴对称与中心对称图形的识别,理解这两个定义是解题关键8、D【分析】“雪花图案”可以看成正六边形,根据正六边形的中心角为60,即可解决问题【详解】解:“雪花图案”可以看成正六边形,正六边形的中心角为60,这个图案至少旋转60能与原雪花图案重合故选:D【点睛】本题考查旋转对称图形,生活中的旋转现象等知识,解题的关键是理解题意,掌握正六边形的性质9、A【分析】利用位似图形的性质结合两图形的位似比进而得出C点坐标【详解】解:线段AB的两个端点坐标分别为A(6,6),B(8,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,端点C的横坐标和纵坐标都变为A点
14、的一半,端点C的坐标为:(3,3)故选:A【点睛】此题主要考查了位似图形的性质,利用两图形的位似比得出对应点横纵坐标关系是解题关键10、D【分析】阴影面积为旋转后为直径的半圆面积加旋转后扇形面积减去旋转前为直径的半圆面积,则阴影面积为旋转后的扇形面积,由扇形面积公式计算即可【详解】直径AB6的半圆,绕B点顺时针旋转30又AB=6,ABA=30故答案为:D【点睛】本题考查了扇形面积公式的应用,扇形面积公式为,由旋转的性质得出阴影面积为扇形面积是解题的关键二、填空题1、(2,-1)【分析】根据关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数,可得a、b的值,进而可得答案【详解】解:点A(a
15、+1,2)、B(3,b-1)两点关于x轴对称,a+1=3,b-1=-2,解得:a=2,b=-1,C的坐标是(2,-1),故答案为:(2,-1)【点睛】本题主要考查了关于x轴对称的点的坐标,关键是掌握点的坐标变化规律2、12【分析】根据关于轴对称的点,纵坐标相同,横坐标互为相反数分别求出、的值,然后代入代数式进行计算即可求解【详解】解:点与点关于轴对称,故答案为:【点睛】本题考查了关于轴对称的点的坐标,解题的关键是掌握好对称点的坐标规律:关于轴对称的点,纵坐标相同,横坐标互为相反数3、【分析】根据题意先求出BAO=25,进而求出OBC=40,求出COE=OCB=40,最后根据等腰三角形的性质即可
16、得出,进而再判断即可【详解】解:BAC=50,AO为BAC的平分线,BAO=BAC=50=25又AB=AC,ABC=ACB=65DO是AB的垂直平分线,OA=OB,ABO=BAO=25,OBC=ABC-ABO=65-25=40AO为BAC的平分线,AB=AC,直线AO垂直平分BC,OB=OC,OCB=OBC=40,将C沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,OE=CECOE=OCB=40;在OCE中,OEC=180-COE-OCB=180-40-40=100,OEF=CEO=50,正确;OCB=OBC=COE=40,BOE=180-OBC-COE-OCB =180-40-40
17、-40=60, 错误;ABO=BAO=25,DO是AB的垂直平分线,DOB=90-ABO=75,OCB=OBC=40,BOC=180-OBC -OCB=180-40-40=100,DOC=DOB+BOC=75+100=175,即D、O、C三点不共线,错误.故答案为:【点睛】本题考查等腰三角形的性质和三角形内角和180以及翻折变换及其应用,解题的关键是根据翻折变换的性质,找出图中隐含的等量关系,灵活运用有关定理来分析判断4、2【分析】根据余弦的定义求出OB,根据题意求出OBn,根据题意找出规律,根据规律解答即可【详解】解:在RtAOB中,AOB30,OA1,OBOAcosAOB,由题意得,OB1
18、2OB2,OB22OB122,OBn2n2n1,的长为:22020=22020,故答案为:22020【点睛】本题考查的是位似变换的性质、图形的变化规律、锐角三角函数的定义,正确得到图形的变化规律是解题的关键5、【分析】AE=AB=CD=FG,AD=EF,AF=AC,FAC=90,即可得到 正确;证明AQEMQH可以判断 ;由全等三角形的性质可得到CP=AQ,由等腰直角三角形的性质可以得到PQ=MQ,即正确;由P为CM的中点,得到,则,即正确 【详解】解:如图,连接AF,AC,PQ,延长FE交BC于N,取FN中点H,连接MH, 矩形ABCD绕点A逆时针旋转90得到矩形AEFG, AE=AB=CD
19、=FG,AD=EF,AF=AC,FAC=90,D=AEQ=90, M是CF的中点, AM=MC=MF,AMCF,即正确;DPC=APM,DPC+DCP=90,APM+MAP=90, DCP=MAP,AE=CD,D=AEQ=90,在CDP和AEQ中, CDPAEQ(ASA),即正确; CP=AQ, MC-CP=AM-AQ, MP=MQ, PQ=MQ,即正确; P为CM的中点,AE=CD=2,即正确 故答案为:【点睛】本题主要考查了全等三角形的性质与判定,勾股定理,旋转的性质,等腰三角形的性质与判定,矩形的性质等等,解题的关键在于能够熟练掌握相关知识进行求解三、解答题1、(1)见解析;(2)15【
20、分析】(1)根据旋转的性质可得,进而证明是等边三角形,进而可得,即可证明;(2)根据旋转的性质可得,又是等边三角形,则,即可求得ADE的周长等于【详解】(1)解:ABC是等边三角形,将BCD绕点C旋转得到ACE,是等边三角形;(2)将BCD绕点C旋转得到ACE,是等边三角形, AB8,BD7,ADE的周长等于【点睛】本题考查了旋转的性质,三角形全等的性质,等边三角形的性质,平行线的判定,掌握旋转的性质是解题的关键2、(1)图见解析,;(2)图见解析,【分析】(1)写出,关于原点对称的点,连接即可;(2)连接OC,OB,根据旋转的90可得,即可;【详解】(1),关于原点对称的点,作图如下;(2)
21、连接OC,OB,根据旋转的90可得,其中点C2的坐标是(3,-1),作图如下:【点睛】本题主要考查了平面直角坐标系中图形的旋转,作关于原点对称的图形,准确分析作图是解题的关键3、(1)画图见解析,;(2)轴,;(3)【分析】(1)先确定关于轴对称的对应点 再连接即可;(2)先确定平移后的对应点 再连接 由图形位置可得关于轴对称,再写出的坐标即可;(3)先求解 作再证明 是等腰直角三角形,同理:作证明,所以是等腰直角三角形,从而可得答案.【详解】解:(1)如图,线段即为所求作的线段, (2)如图,线段为平移后的线段,线段与线段关于轴对称,所以对称轴是轴,则 (3)如图,即为所求作的三角形,由勾股
22、定理可得: 是等腰直角三角形,同理: 所以是等腰直角三角形.此时:【点睛】本题考查的是轴对称的性质,平移的性质,轴对称的作图,平移的作图,勾股定理与勾股定理的逆定理的应用,等腰直角三角形的判定,数形结合的运用是解本题的关键.4、(1)AG=DE;(2)成立,理由见解析;(3)90,135【分析】(1)证明AOGDOE(SAS),得出AG=DE即可;(2)先证明AOG=DOE,再证明AOGDOE(SAS),得出AG=DE即可;(3)过点E作EMAC交AC的延长线于点M,证明AOGDOE,则可得出答案;作AHGE于H,连接OH,则当O、A、H在同一直线上时OH最小,然后根据旋转的性质可得出答案【详
23、解】(1)证明:点O是正方形ABCD两对角线的交点,OA=OD,OAOD,AOG=DOE=90,四边形OEFG是正方形,OG=OE,在AOG和DOE中,AOGDOE(SAS),AG=DE;(2)成立,理由:点O是正方形ABCD两对角线的交点,OA=OD,OAOD,AOD=DOC=90,DOG=COE=,AOG=DOE,四边形OEFG是正方形,OG=OE,在AOG和DOE中,AOGDOE(SAS),AG=DE;(3)过点E作EMAC交AC的延长线于点M,则EMO=90,由旋转的性质可知MOE=DOG=30,MOE=90-30=60,点O是正方形ABCD两对角线的交点,OAOD,AOG=90-30
24、=60,AOG =MOE,在AOG和DOE中,AOGDOE(SAS),OAG=EMO=90;作AHGE于H,连接OH, OG2OD,OE2OC,OG、OE为定值,GE=是定值,当AH最小时,AEG的面积最小,当O、A、H在同一直线上时OH最小,OA为定值,此时AH最小,即AEG的面积最小,此时的旋转角=HOG+AOD=45+90=135【点睛】本题考查了正方形的性质,全等三角形的判定与性质,勾股定理,旋转的性质等知识,熟练掌握旋转的性质及证明三角形全等是解决问题的关键5、(1)点的坐标为(-4,-6),点的坐标为(-5,-2),点的坐标为(-2,-1),画图见解析;(2)【分析】(1)先根据关于原点对称的点的坐标特征求出点,点,点的坐标,然后描出点,点,点,最后顺次连接点,点,点即可;(2)根据的面积等于其所在的长方形面积减去周围三个三个小三角形面积求解即可【详解】解:(1)是ABC关于原点对称的中心对称图形, A(4,6),B(5,2),C(2,1),点的坐标为(-4,-6),点的坐标为(-5,-2),点的坐标为(-2,-1);如图所示,即为所求;(2)由图可知 【点睛】本题主要考查了画中心对称图形,关于原点对称的点的坐标特征,三角形面积,解题的关键在于能够熟练掌握关于原点对称的点的坐标特征