《2022年强化训练北师大版八年级数学下册第四章因式分解同步测评练习题(无超纲).docx》由会员分享,可在线阅读,更多相关《2022年强化训练北师大版八年级数学下册第四章因式分解同步测评练习题(无超纲).docx(16页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、北师大版八年级数学下册第四章因式分解同步测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知cab0,若M|a(ac)|,N|b(ac)|,则M与N的大小关系是()AMNBMNCMND不能确定2、当n
2、为自然数时,(n+1)2(n3)2一定能()A被5整除B被6整除C被7整除D被8整除3、下列等式从左到右的变形,属于因式分解的是( )A 2x1B(ab)(ab)C4x4D14、判断下列不能运用平方差公式因式分解的是()Am2+4Bx2y2Cx2y21D(ma)2(m+a)25、下列各式中,从左到右的变形是因式分解的是( )ABCD6、如果a、b分别是的整数部分和小数部分,那么的值是( )A8BC4D7、下列各组多项式中,没有公因式的是()Aaxby和by2axyB3x9xy和6y22yCx2y2和xyDa+b和a22ab+b28、如果多项式x25x+c可以用十字相乘法因式分解,那么下列c的取
3、值正确的是()A2B3C4D59、下列由左到右的变形,属于因式分解的是( )ABCD10、下列式子从左到右的变形中,属于因式分解的是( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、单项式4m2n2与12m3n2的公因式是_2、分解因式_3、在实数范围内因式分解:y22y1_4、计算下列各题:(1)_; (2)_; (3)_; (4)_5、因式分解:=_三、解答题(5小题,每小题10分,共计50分)1、已知,求值:(1);(2)2、因式分解:3、分解因式(1)4x2-16;(2)16-m2;(3) ; (4)9a2(xy)+4b2(yx)4、(1)因式分解:
4、 (2)计算:5、观察下列因式分解的过程:根据上述因式分解的方法,尝试将下列各式进行因式分解:(1);(2)-参考答案-一、单选题1、C【分析】方法一:根据整式的乘法与绝对值化简,得到M-N=(ac)(ba)0,故可求解;方法二:根据题意可设c=-3,a=-2,b=-1,再求出M,N,故可比较求解【详解】方法一:cab0,a-c0,M|a(ac)|=- a(ac)N|b(ac)|=- b(ac)M-N=- a(ac)- b(ac)= - a(ac)+ b(ac)=(ac)(ba)b-a0,(ac)(ba)0MN方法二: cab0,可设c=-3,a=-2,b=-1,M|-2(-2+3)|=2,N
5、|-1(-2+3)|=1MN故选C【点睛】此题主要考查有理数的大小比较与因式分解得应用,解题的关键求出M-N=(ac)(ba)0,再进行判断2、D【分析】先把(n+1)2(n3)2分解因式可得结果为:从而可得答案.【详解】解: (n+1)2(n3)2 n为自然数所以(n+1)2(n3)2一定能被8整除,故选D【点睛】本题考查的是利用平方差公式分解因式,掌握“”是解题的关键.3、C【分析】根据因式分解的定义和方法逐一判断即可【详解】2x12x1,A不是因式分解,不符合题意;(ab)(ab)不符合因式分解的定义,B不是因式分解,不符合题意;4x4,符合因式分解的定义,C是因式分解,符合题意;1,不
6、符合因式分解的定义,D不是因式分解,不符合题意;故选C【点睛】本题考查了因式分解的定义即把一个多项式分成几个因式的积的形式,熟练掌握因式分解的实质是恒等变形是解题的关键4、B【分析】根据平方差公式:进行逐一求解判断即可【详解】解:A、,能用平方差公式分解因式,不符合题意;B、,不能用平方差公式分解因式,符合题意;C、,能用平方差公式分解因式,不符合题意;D、能用平方差公式分解因式,不符合题意;故选B【点睛】本题主要考查了平方差公式分解因式,解题的关键在于能够熟练掌握平方差公式5、C【分析】根据因式分解的定义判断即可.【详解】解:因式分解即把一个多项式化成几个整式的积的形式.A. ,不是几个整式
7、的积的形式,A选项不是因式分解;B. ,不是几个整式的积的形式,B选项不是因式分解C. ,符合因式分解的定义,C是因式分解. D. ,不是几个整式的积的形式,D选项不是因式分解;故选C【点睛】本题考查了因式分解的定义,把一个多项式化成几个整式的积的形式的变形叫因式分解,等号的左边是一个多项式,右边是几个整式的积,正确理解因式分解的定义是解题的关键.6、B【分析】先求得的范围,进而求得的范围即可求得的值,进而代入代数式求值即可【详解】则a、b分别是的整数部分和小数部分,则故选B【点睛】本题考查了估算无理数的大小,二次根式的混合运算,求得的值是解题的关键7、D【分析】直接利用公因式的确定方法:定系
8、数,即确定各项系数的最大公约数;定字母,即确定各项的相同字母因式(或相同多项式因式);定指数,即各项相同字母因式(或相同多项式因式)的指数的最低次幂,进而得出答案【详解】解:A、by2axyy(axby),故两多项式的公因式为:axby,故此选项不合题意;B、3x9xy3x(13y)和6y22y2y(13y),故两多项式的公因式为:13y,故此选项不合题意;C、x2y2(xy)(xy)和xy,故两多项式的公因式为:xy,故此选项不合题意;D、ab和a22abb2(ab)2,故两多项式没有公因式,故此选项符合题意;故选:D【点睛】此题主要考查了公因式,掌握确定公因式的方法是解题关键8、C【分析】
9、根据十字相乘法进行因式分解的方法,对选项逐个判断即可【详解】解:A、,不能用十字相乘法进行因式分解,不符合题意;B、,不能用十字相乘法进行因式分解,不符合题意;C、,能用十字相乘法进行因式分解,符合题意;D、,不能用十字相乘法进行因式分解,不符合题意;故选C【点睛】此题考查了十字相乘法进行因式分解,解题的关键是掌握十字相乘法进行因式分解9、A【分析】直接利用因式分解的定义分别分析得出答案【详解】解:、,是因式分解,符合题意、,是整式的乘法运算,故此选项错误,不符合题意;、,不符合因式分解的定义,故此选项错误,不符合题意;、,不符合因式分解的定义,故此选项错误,不符合题意;故选:A【点睛】本题主
10、要考查了因式分解的意义,解题的关键是正确把握分解因式的定义,即分解成几个式子相乘的形式10、B【分析】把一个多项式化为几个整式的积的形式叫把这个多项式分解因式,根据定义逐一判断即可.【详解】解:是整式的乘法,故A不符合题意;是因式分解,故B符合题意;右边不是整式的积的形式,不是因式分解,故C不符合题意;右边不是整式的积的形式,不是因式分解,故D不符合题意;故选B【点睛】本题考查的是因式分解的定义,掌握“根据因式分解的定义判断变形是否是因式分解”是解本题的关键.二、填空题1、4m2n2【分析】找到系数的公共部分,再找到因式的公共部分即可【详解】解:由于4和12的公因数是4,m2n2和m3n2的公
11、共部分为m2n2,所以4m2n2与12m3n2的公因式是4m2n2故答案为4m2n2【点睛】本题主要考查公因式,熟练掌握如何去找公因式是解题的关键2、【分析】直接提取公因式m,进而分解因式得出答案【详解】解:=m(m+6)故答案为:m(m+6)【点睛】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键3、(y1)(y1)【分析】变形整式为y22y12,前三项利用完全平方公式,再利用平方差公式因式分解【详解】解:y22y1y22y12(y1)2()2(y1)(y1)故答案为:(y1)(y1)【点睛】本题主要考查了多项式的因式分解,熟练掌握多项式因式分解的方法是解题的关键4、 【分析】(
12、1)根据同底数幂相乘运算法则计算即可;(2)根据积的乘方的运算法则计算即可;(3)根据幂的乘方的运算法则计算即可;(3)根据提取公因式法因式分解即可【详解】解:(1); (2); (3); (4)故答案是:(1);(2);(3);(4)【点睛】本题主要考查了同底数幂相乘、幂的乘方、积的乘方以及运用提取公因式法分解因式等知识点,灵活运用相关运算法则成为解答本题的关键5、【分析】原式提取a,再利用完全平方公式分解即可【详解】解:原式=a(m2-2mn+n2)=a(m-n)2,故答案为:a(m-n)2【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键三、解答题1、(
13、1);(2)【分析】(1)把两个等式相减,可得:再移项把等式的左边分解因式,结合 从而可得答案;(2)由可得:由,可得再把分解因式即可得到答案.【详解】解:(1) , 则 (2) , 【点睛】本题考查的是因式分解的应用,求解代数式的值,掌握“利用提公因式,平方差公式分解因式及整体代入法求解代数式的值”是解题的关键.2、【分析】首先对后面三项利用完全平方公式进行因式分解,然后利用平方差公式因式分解即可【详解】解:原式【点睛】此题考查了因式分解的方法,解题的关键是熟练掌握因式分解的方法因式分解的方法有:提公因式法,平方差公式法,完全平方公式法,十字相乘法等3、(1);(2);(3);(4)【分析】
14、(1)(4)先提取公因式,再利用平方差公式继续分解即可;(2)(3)利用平方差公式分解即可【详解】解:(1)4x2-16=4(x2-4)=4(x+2)(x-2);(2)16-m2=(4+)( 4-);(3);(4)9a2(xy)+4b2(yx)=9a2(xy)-4b2(xy)=(xy)(9a2-4b2)【点睛】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解因式,分解因式要彻底是解题关键4、(1);(2)【分析】(1)首先提取公因式,再根据完全平方公式计算,即可得到答案;(2)根据平方差公式和合并同类项的性质计算,即可得到答案【详解】(1);(2)【点睛】本题考查了乘法公式、整式、因式分解的知识;解题的关键是熟练掌握平方差公式、完全平方公式,从而完成求解5、(1);(2)【分析】(1)根据题中的方法,适当加减适合的数,再提取公因式,将各式分解即可;(2)根据题中的方法分解因式即可【详解】解:(1);(2)【点睛】本题考查了因式分解,解题的关键是熟练掌握提取公因式进行因式分解