《强化训练北师大版九年级数学下册第一章直角三角形的边角关系定向测试练习题(含详解).docx》由会员分享,可在线阅读,更多相关《强化训练北师大版九年级数学下册第一章直角三角形的边角关系定向测试练习题(含详解).docx(27页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、九年级数学下册第一章直角三角形的边角关系定向测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,为测量一幢大楼的高度,在地面上与楼底点相距30米的点处,测得楼顶点的仰角,则这幢大楼的高度为( )A米
2、B米C米D米2、一小球从斜坡的顶端沿斜坡向下滚落到斜坡底端,行了100米,下落的铅直高度为50米,则该斜坡的坡度为( )A30BCD3、的相反数是( )ABCD4、如图,一艘轮船在小岛A的西北方向距小岛海里的C处,沿正东方向航行一段时间后到达小岛A的北偏东的B处,则该船行驶的路程为( )A80海里 B120海里C海里D海里5、如图,琪琪一家驾车从地出发,沿着北偏东的方向行驶,到达地后沿着南偏东的方向行驶来到地,且地恰好位于地正东方向上,则下列说法正确的是( )A地在地的北偏西方向上B地在地的南偏西方向上CD6、如图,在四边形ABCD中,O为对角线BD的中点,则等于( )ABCD7、如图,将一块
3、含30角的三角板ABC的直角顶点C放置于直线m上,点A,点B在直线m上的正投影分别为点D,点E,若AB10,BE3,则AB在直线m上的正投影的长是()A5B4C3+4D4+48、在RtABC中,C90,BC3,AC4,那么cosB的值等于()ABCD9、三角形在正方形网格纸中的位置如图所示,则tan的值是( )A12B43C35D4510、如图,在边长为2的正方形ABCD中,E,F分别为BC,CD的中点,连接AE,BF交于点G,将BCF沿BF对折,得到BPF,延长FP交BA延长线于点Q下列结论错误的是()AAEBFBQBQFCcosBQPDS四边形ECFGSBGE第卷(非选择题 70分)二、填
4、空题(5小题,每小题4分,共计20分)1、如图,ABC中,BDAB,BD、AC相交于点D,ADAC,AB2,ABC150,则DBC的面积是_2、_3、如图, 小明沿着坡度 的坡面由 到 直行走了 13 米时, 他上升的高度 _米4、如图,是拦水坝的横断面,堤高为6米,斜面坡度为,则斜坡的长为_米5、如图,在平面直角坐标系中,有一个,ABO90,AOB30,直角边OB在y轴正半轴上,点A在第一象限,且OA1,将绕原点逆时针旋转30,同时把各边长扩大为原来的两倍(即OA12OA)得到,同理,将绕原点O逆时针旋转30,同时把各边长扩大为原来的两倍,得到,依此规律,得到,则的长度为_三、解答题(5小题
5、,每小题10分,共计50分)1、如图,某学校新建了一座雕塑CD,小林站在距离雕塑3.5米的A处自B点看雕塑头顶D的仰角为60,看雕塑底部C的仰角为45,求雕塑CD的高度(最后结果精确到0.1米,参考数据:)2、如图,在平面直角坐标系中,点A(-m,m)(m0)在反比例函数(x0)的图象上,矩形ABCD与坐标轴的交点分别为H,E,F,G,ABy轴连接AE,AF,分别交坐标轴于点M,N,连接MN(1)猜想:EAF的度数是定值吗?若是,请求出度数;若不是,请说明理由;(2)若M为OH的中点,求tanANM3、如图是我们日常生活中经常使用的订书器,AB是订书机的托板,压柄BC绕着点B旋转,连接杆DE的
6、一端点D固定,点E从A向B处滑动在滑动过程中,DE的长保持不变已知BDcm(1)如图1,当ABC45,BE12cm时,求连接杆DE的长度;(结果保留根号)(2)现将压柄BC从图1的位置旋转到与底座AB垂直,如图2所示,请直接写出此过程中,点E滑动的距离(结果保根号)4、计算:5、如图, 某种路灯灯柱 垂直于地面, 与灯杆 相连. 已知直线 与直线 的夹角是 . 在地面点 处测得点 的仰角是 , 点 仰角是 , 点 与点 之间的距离为 米 求:(1)点 到地面的距离;(2) 的长度(精确到 米)(参考数据: )-参考答案-一、单选题1、C【分析】利用在RtABO中,tanBAO即可解决【详解】:
7、解:如图,在RtABO中,AOB90,A65,AO30m,tan65,BO30tan65米故选:C【点睛】本题考查解直角三角形的应用,解题的关键是熟知正切函数为对边比邻边2、B【分析】画出对应图形,根据题意即勾股定理求出水平距离的长度,利用坡度等于铅直距离与水平距离之比,求出坡度即可【详解】解:如下图所示:由题意即图可知:,在中,由勾股定理可得:,坡度为:故选:B【点睛】本题主要是考查了坡度的定义以及勾股定理,熟练掌握坡度的定义,是求解该类问题的关键3、C【分析】先计算=,再求的相反数即可【详解】=,的相反数是,故选C【点睛】本题考查了特殊角的三角函数值,相反数的定义,熟记特殊角的三角函数值是
8、解题的关键4、D【分析】过点A作ADBC于点D,分别在 和中,利用锐角三角函数,即可求解【详解】解:过点A作ADBC于点D,根据题意得: 海里,ADC=ADB=90,CAD=45,BAD=60,在 中, 海里,在 中, 海里, 海里,即该船行驶的路程为海里故选:D【点睛】本题主要考查了解直角三角形,熟练掌握特殊角的锐角三角函数值是解题的关键5、B【分析】根据题意可知,由此即可得到即可判断A;由可以判断B;由可以判断C;求出即可判断D【详解】解:如图所示:由题意可知,即在处的北偏西,故A不符合题意;,地在地的南偏西方向上,故B不符合题意;,故C错误,故D不符合题意故选B【点睛】本题考查的是解直角
9、三角形和方向角问题,熟练掌握方向角的概念是解题的关键6、A【分析】先根据平行线的性质和直角三角形斜边上的中线等于斜边的一半求出BD,再根据勾股定理的逆定理判断出BDC=90,由正切定义求解即可【详解】解:ADBC,ABC=90,BAD=90,O为对角线BD的中点,OA=2,BD=2OA=4,BC=5,CD=3,BD2+CD2=BC2,BDC=90,tanDCB= =,故选:A【点睛】本题考查平行线的性质、直角三角形的斜边中线性质、勾股定理的逆定理、正切,熟练掌握勾股定理的逆定理是解答的关键7、C【分析】根据30角所对的直角边等于斜边的一半,可得AC=5,根据锐角三角函数可得BC的长,再根据勾股
10、定理可得CE的长;通过证明ACDCBE,再根据相似三角形的性质可得CD的长,进而得出DE的长【详解】解:在RtABC中,ABC=30,AB=10,AC=AB=5,BC=ABcos30=10,在RtCBE中,CE=,CAD+ACD=90,BCE+ACD=90,CAD=BCE,RtACDRtCBE,CD=,DE=CD+BE=,即AB在直线m上的正投影的长是,故选:C【点睛】本题考查了平行投影,掌握相似三角形的判断与性质以及勾股定理是解答本题的关键8、D【分析】根据题意画出图形,求出AB的值,进而利用锐角三角函数关系求出即可【详解】解:如图,在RtABC中,C90,BC3,AC4,cosB故选:D【
11、点睛】本题考查了三角函数的定义,熟知余弦函数的定义是解题关键9、A【分析】根据在直角三角形中,正切值等于对边比上邻边进行求解即可【详解】解:如图所示,在直角三角形ABC中ACB=90,AC=2,BC=4,tan=ACBC=24=12,故选A【点睛】本题主要考查了求正切值,解题的关键在于能够熟练掌握正切的定义10、C【分析】BCF沿BF对折,得到BPF,利用角的关系求出QF=QB,即可判断B;首先证明ABEBCF,再利用角的关系求得BGE=90,即可得到AEBF即可判断A;利用QF=QB,解出BP,QB,根据正弦的定义即可求解即可判断C;可证BGE与BCF相似,进一步得到相似比,再根据相似三角形
12、的性质即可求解即可判断D【详解】解:四边形ABCD是正方形,C=90,ABCD,由折叠的性质得:FPFC,PFBBFC,FPB=C90,CDAB,CFBABF,ABFPFB,QFQB,故B选项不符合题意;E,F分别是正方形ABCD边BC,CD的中点,CD=BC,ABE=C=90,CFBE,在ABE和BCF中, ,ABEBCF(SAS),BAECBF,又BAE+BEA90,CBF+BEA90,BGE90,AEBF,故A选项不符合题意;令PFk(k0),则PB2k,在RtBPQ中,设QBx,x2(xk)2+4k2,x,cosBQP,故C选项符合题意;BGEBCF,GBECBF,BGEBCF,BEB
13、C,BFBC,BE:BF1:,BGE的面积:BCF的面积1:5,S四边形ECFG4SBGE,故D选项不符合题意故选C【点睛】本题主要考查了正方形的性质,全等三角形的性质与判定,相似三角形的性质与判定,勾股定理,解直角三角形,解题的关键在于能够熟练掌握相关知识进行求解二、填空题1、【分析】过点作,交延长线于点,先根据相似三角形的判定证出,根据相似三角形的性质可得,从而可得,再解直角三角形可得,从而可得,然后利用三角形的面积公式即可得【详解】解:如图,过点作,交延长线于点,解得,又,在中,即,解得,解得,则的面积是,故答案为:【点睛】本题考查了相似三角形的判定与性质、解直角三角形等知识点,通过作辅
14、助线,构造相似三角形是解题关键2、【详解】解:,故答案为:【点睛】本题考查了三角函数的计算,解题关键是熟记特殊角三角函数值3、【分析】根据坡度的定义求得,即可求得的长【详解】解:设,则根据勾股定理可得故答案为:5【点睛】考查了解直角三角形的应用一坡度坡角问题和勾股定理,熟悉且会灵活应用公式:坡度=垂直高度水平宽度是解题的关键。4、【分析】由斜面坡度为有,解得AC=12,再由勾股定理求得AB即可【详解】斜面坡度为是直角三角形,故有故答案为:【点睛】本题考察了直角三角形应用题,解直角三角形应用题的一般步骤(1)弄清题中的名词、术语的意义,如仰角、俯角、坡度、坡角等概念,然后根据题意画出几何图形,建
15、立数学模型;(2)将实际问题中的数量关系归结为解直角三角形的问题,当有些图形不是直角三角形时,可适当添加辅助线,把它们分割成直角三角形或矩形;(3)寻找直角三角形,并解这个三角形5、2【分析】根据余弦的定义求出OB,根据题意求出OBn,根据题意找出规律,根据规律解答即可【详解】解:在RtAOB中,AOB30,OA1,OBOAcosAOB,由题意得,OB12OB2,OB22OB122,OBn2n2n1,的长为:22020=22020,故答案为:22020【点睛】本题考查的是位似变换的性质、图形的变化规律、锐角三角函数的定义,正确得到图形的变化规律是解题的关键三、解答题1、米【分析】首先分析图形:
16、根据题意构造两个直角三角形、,再利用其公共边求得、,再根据计算即可求出答案【详解】解:在中,米,在中,米,则米故塑像的高度大约为米【点睛】本题考查解直角三角形的知识,解题的关键是要先将实际问题抽象成数学模型分别在两个不同的三角形中,借助三角函数的知识,研究角和边的关系2、(1)是定值,EAF=45;(2)3【分析】(1)连接AO,由点的坐标可得四边形AHOG为正方形,然后利用勾股定理得出,根据点C所在的反比例函数解析式可得:,利用等量代换得出:,根据相似三角形的判定和性质可得:,结合图形,由各角之间的数量关系即可得出结果;(2)OH的延长线上取点P,使得,连接AP,用正方形半角模型得,设正方形
17、AHOG的边长为2a,即可得出各边长,然后利用勾股定理得出,根据正切函数的性质求解即可【详解】解:(1)证明:如图,连接AO,点,四边形AHOG为正方形,根据点C所在的反比例函数解析式可得:,又,为定值;(2)解:如图,在OH的延长线上取点P,使得,连接AP,利用正方形半角模型即:将AGN旋转到APH位置,得,设正方形AHOG的边长为2a,则,设,则,由勾股定理得,即:,得,【点睛】题目主要考查反比例函数图象与图形的结合问题,包括正方形的判定和性质,相似三角形的判定和性质,图形的旋转,正切函数等,理解题意,作出相应辅助线,综合运用这些知识点是解题关键3、(1)连接杆的长度为;(2)【分析】(1
18、)过点D作DMAB交AB与点M,在RtBDM中,通过解直角三角形可求出DM、BM的长度,在RtDEM中,利用勾股定理可求出DE的长; (2)在RtDBE中,利用勾股定理可求出BE的长度,结合(1)中BE的长度即可求出点E滑动的距离【详解】解(1)在图1中,过点D作DMAB交AB与点M, 在RtBDM中,DM=BDsin45=,BM=BDcos45=, 在RtDEM中,DME=90,DM=4,EM=BE-BM=8, DE= 连接杆DE的长度为; (2)在RtDBE中,DBE=90,BD=,DE=, BE= 在此过程中点E滑动的距离为cm【点睛】本题主要考查了解直角三角形的应用以及勾股定理,熟练掌
19、握解直角三角形以及灵活使用勾股定理是解决问题的关键4、7【分析】根据,立方根的求法,特殊三角函数的值,积的乘方,计算即可得答案【详解】解: =1-2+6-(-2)=7【点睛】本题考查了二次根式、零指数幂、特殊三角函数的值、积的乘方的相关计算,做题的关键是掌握相关法则,特别积的乘方的逆运算,认真计算5、(1)2.8米;(2)AB的长度为0.6米【分析】(1)过点A作交于点F,则,在中,用三角函数即可得;(2)过点A作交于点H,根据,证明四边形AFCH是矩形,则,设BC=x,则米,根据三角形内角和定理得,即,根据三角函数得DF=2.1米,米,在中,根据三角函数得,则,即可得,则,根据三角函数即可得米【详解】解:(1)过点A作交于点F,则,在中,(米),即点A到地面的距离为2.8米;(2)过点A作交于点H,在四边形AFCH中,四边形AFCH是矩形,设BC=x,则米,(米),(米),米,在中,(米),(米)【点睛】本题考查了三角函数,矩形的判定与性质,解题的关键是掌握并灵活运用这些知识点