强化训练北师大版九年级数学下册第一章直角三角形的边角关系定向攻克试题(名师精选).docx

上传人:知****量 文档编号:28197234 上传时间:2022-07-26 格式:DOCX 页数:19 大小:378.34KB
返回 下载 相关 举报
强化训练北师大版九年级数学下册第一章直角三角形的边角关系定向攻克试题(名师精选).docx_第1页
第1页 / 共19页
强化训练北师大版九年级数学下册第一章直角三角形的边角关系定向攻克试题(名师精选).docx_第2页
第2页 / 共19页
点击查看更多>>
资源描述

《强化训练北师大版九年级数学下册第一章直角三角形的边角关系定向攻克试题(名师精选).docx》由会员分享,可在线阅读,更多相关《强化训练北师大版九年级数学下册第一章直角三角形的边角关系定向攻克试题(名师精选).docx(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、九年级数学下册第一章直角三角形的边角关系定向攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如果直线 与 轴正半轴的夹角为锐角 , 那么下列各式正确的是( )ABCD2、在RtABC中,C90,BC3

2、,AC4,那么cosB的值等于()ABCD3、已知RtABC中,则的值为( )ABCD4、等腰三角形的底边长,周长,则底角的正切值为( )ABCD5、小菁同学在数学实践活动课中测量路灯的高度如图,已知她的目高AB为1.5米,她先站在A处看路灯顶端O的仰角为35,再往前走3米站在C处,看路灯顶端O的仰角为65,则路灯顶端O到地面的距离约为(已知sin350.6,cos350.8,tan350.7,sin650.9,cos650.4,tan652.1)()A3.2米B3.9米C4.7米D5.4米6、如图,滑雪场有一坡角为20的滑道,滑雪道的长AC为100米,则BC的长为()米AB100cos20C

3、D100sin207、在ABC中,C90,BC2,sinA,则边AC的长是()AB3CD8、如图,为测量一幢大楼的高度,在地面上与楼底点相距30米的点处,测得楼顶点的仰角,则这幢大楼的高度为( )A米B米C米D米9、的值为( )A1B2CD10、图是第七届国际数学教育大会(ICME)会徽,在其主体图案中选择两个相邻的直角三角形,恰好能组合得到如图所示的四边形若,则的值为( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知0a90,当a =_时,sina =;当a =_时,tana=2、某人沿着坡度为 12.4 的斜坡向上前进了 130m,那么他的高度上升了

4、_m3、在中,则的度数是_4、如图,矩形ABCD中,DEAC于点E,ADE,cos,AB4,AD长为_5、如图,正方形ABCD中,对角线AC、BD交于点O,折叠正方形纸片ABCD,使AD落在BD上,点A恰好与BD上的点F重合,展开后折痕DE分别交AB、AC于点E、G,连接GF,给出下列结论:AGD110.5;2tanAED2;SAGDSOGD;四边形AEFG是菱形;BFOF;SOGF1,则正方形ABCD的面积是128,其中正确的是_(只填写序号)三、解答题(5小题,每小题10分,共计50分)1、先化简,再求代数式的值,其中2、计算:4sin60|2| +(1)20213、6tan230sin6

5、02tan454、如图,建筑物上有一高为的旗杆,从D处观测旗杆顶部A的仰角为,观测旗杆底部B的仰角为,则建筑物的高约为多少米?(结果保留小数点后一位)(参考数据,)5、计算:-参考答案-一、单选题1、D【分析】在直线y=2x上任取一点P (a,2a),过点P作x轴的垂线,垂足为点B,则可求得的正余弦、正余切值,从而可得答案【详解】如图,在直线y=2x上任取一点P (a,2a),过点P作x轴的垂线,垂足为点B则OB=|a|,PB=2|a|由勾股定理得:在直角POB中,故选项D正确故选:D【点睛】本题考查了正比例函数的图象与性质,锐角三角函数,关键是画出图形,并在直线任取一点,作x轴的垂线得到直角

6、三角形2、D【分析】根据题意画出图形,求出AB的值,进而利用锐角三角函数关系求出即可【详解】解:如图,在RtABC中,C90,BC3,AC4,cosB故选:D【点睛】本题考查了三角函数的定义,熟知余弦函数的定义是解题关键3、A【分析】根据勾股定理,可得AB的长,根据余弦等于邻边比斜边,可得答案【详解】解:在RtABC中,C90,AC2,BC1,由勾股定理,得AB,cosB,故选:A【点睛】本题考查了锐角三角函数,利用勾股定理求出斜边,再利用余弦等于邻边比斜边4、C【分析】由题意得出等腰三角形的腰长为13cm,作底边上的高,根据等腰三角形的性质得出底边一半的长度,最后由三角函数的定义即可得出答案

7、【详解】如图,是等腰三角形,过点A作,BC=10cm,AB=AC,可得:,AD是底边BC上的高,即底角的正切值为故选:C【点睛】本题主要考查等腰三角形的性质、勾股定理和三角函数的定义,熟练掌握等腰三角形的“三线合一”是解题的关键5、C【分析】过点O作OEAC于点F,延长BD交OE于点F,设DFx,根据锐角三角函数的定义表示OF的长度,然后列出方程求出x的值即可求出答案【详解】解:过点O作OEAC于点F,延长BD交OE于点F,设DFx,tan65,OFxtan65,BF3+x,tan35,OF(3+x)tan35,2.1x0.7(3+x),x1.5,OF1.52.13.15,OE3.15+1.5

8、4.65,故选:C【点睛】本题考查了锐角三角函数解直角三角形的应用,根据题意构建直角三角形是解本题的关键6、B【分析】首先根据坡角的概念得到,然后由的余弦值可得,代入AC的值求解即可【详解】解:滑道坡角为20,AC为100米,故选:B【点睛】此题考查了解三角形的实际应用,解题的关键是熟练掌握锐角三角函数的表示方法7、A【分析】先根据BC2,sinA求出AB的长度,再利用勾股定理即可求解【详解】解:sinA,BC2,AB3,AC,故选:A【点睛】本题考查正弦的定义、勾股定理等知识,是重要考点,难度较小,掌握相关知识是解题关键8、C【分析】利用在RtABO中,tanBAO即可解决【详解】:解:如图

9、,在RtABO中,AOB90,A65,AO30m,tan65,BO30tan65米故选:C【点睛】本题考查解直角三角形的应用,解题的关键是熟知正切函数为对边比邻边9、A【分析】直接求解即可【详解】解:=1,故选:A【点睛】本题考查特殊角的三角函数值,熟记特殊角的三角函数值是解答的关键10、A【分析】在中,可得的长度,在中,代入即可得出答案【详解】解:,在中,在中,.故选:A【点睛】本题主要考查了解直角三角形的应用,熟练掌握解直角三角形的方法进行计算是解决本题的关键.二、填空题1、30 60 【分析】根据特殊角的三角函数值可以得解【详解】解:因为,故答案为30;60【点睛】本题考查三角函数的应用

10、,熟练掌握特殊角的三角函数值是解题关键2、50【分析】设高度上升了h,则水平前进了2.4h,然后根据勾股定理解答即可【详解】设高度上升了h,则水平前进了2.4h,由勾股定理得: ,解得:故答案为:50【点睛】本题主要考查了坡度比与勾股定理得应用,根据坡度比和勾股定理列出关于h的方程成为解答本题的关键3、45度【分析】由条件根据A的正切值求得A的度数,再根据三角形的内角和定理求C即可【详解】解:在ABC中,tanA =,A=60,C=180-A-B=180-60-75=45故答案为:45【点睛】本题主要考查特殊角的正切值以及三角形的内角和定理,熟记特殊角的三角函数值是解题的关键4、【分析】将已知

11、角度的三角函数转换到所需要的三角形中,得到ADE=DCE=,求出AC的值,再由勾股定理计算即可【详解】ADC=AED=90,DAE+ADE=ADE+CDE=90DAE =CDE又DCE+CDE=90ADE=DCE=cos=又矩形ABCD中AB=CD=4AC=在中满足勾股定理有故答案为:【点睛】本题考查了已知余弦长求边长,将已知余弦长转换到所需要的三角形中是解题的关键5、【分析】由四边形ABCD是正方形,可得GADADO45,又由折叠的性质,可求得ADG的度数,从而求得AGD;利用GAD与ADG度数求得AED度数可得;证AEGFEG得AGFG,由FGOG即可得;由折叠的性质与平行线的性质,易得A

12、EG是等腰三角形,由AEFE、AGFG即可得证;设OFa,先求得EFG45,从而知BFEFGFOF;由SOGF1求出GF的长,进而可得出BE及AE的长,利用正方形的面积公式可得出结论【详解】解:四边形ABCD是正方形,GADADO45,由折叠的性质可得:ADGADO22.5,AGD180GADADG112.5,故错误AED180EADADE67.5,tanAED1,则2tanAED2,故错误;由折叠的性质可得:AEEF,EFDEAD90,在AEG和FEG中,AEGFEG(SAS),AGFG,在RtGOF中,AGFGGO,SAGDSOGD,故错误;AGEGADADG67.5AED,AEAG,又A

13、EFE、AGFG,AEEFGFAG,四边形AEFG是菱形,故正确;设OFa,四边形AEFG是菱形,且AED67.5,FEGFGE67.5,EFG45,又EFO90,GFO45,GFEFa,EFO90,EBF45,BFEFGFa,即BFOF,故正确;SOGF1,OG21,即a21,则a22,BFEFa,且BFE90,BE2a,又AEEFa,ABAEBE2aa(2)a,则正方形ABCD的面积是(2)2a2(64)2128,故正确;故答案为:【点睛】本题考查了正方形的性质、折叠的性质、等腰直角三角形的性质以及菱形的判定与性质等知识此题综合性较强,难度较大,注意掌握折叠前后图形的对应关系,注意数形结合

14、思想的应用三、解答题1、,.【分析】由题意根据分式的运算规则进行化简后,进而代入特殊锐角三角函数值进行计算即可.【详解】解:,把代入.【点睛】本题考查分式的化简求值以及特殊锐角三角函数值,熟练掌握分式的运算规则以及特殊锐角三角函数值是解题的关键.2、-3【分析】根据特殊角三角函数,绝对值,有理数的乘方,化简二次根式的计算法则求解即可【详解】解:原式= = -3【点睛】本题主要考查了特殊角三角函数,绝对值,有理数的乘方,二次根式的化简,熟知相关近计算法则是解题的关键3、【分析】将,代入式子计算即可【详解】解:,原式,【点睛】题目主要考查特殊角三角函数的混合运算,熟记特殊角的三角函数值是解题关键4、建筑物BC的高约为24.2米【分析】先根据等腰直角三角形的判定与性质可得,设,从而可得,再在中,利用正切三角函数解直角三角形即可得【详解】解:由题意得:,是等腰直角三角形,设,则,在中,即,解得,经检验,是所列分式方程的解,且符合题意,建筑物BC的高约为24.2米,答:建筑物BC的高约为24.2米【点睛】本题考查了等腰直角三角形的判定与性质、解直角三角形的应用,熟练掌握解直角三角形的方法是解题关键5、【分析】先代入特殊角的三角函数值,再根据二次根式的运算法则计算【详解】解:【点睛】本题考查了特殊角的三角函数值,以及二次根式的混合运算,熟记特殊角的三角函数值是解答本题的关键

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁