《2022中考特训:浙教版初中数学七年级下册第五章分式专题训练试题(名师精选).docx》由会员分享,可在线阅读,更多相关《2022中考特训:浙教版初中数学七年级下册第五章分式专题训练试题(名师精选).docx(14页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、初中数学七年级下册第五章分式专题训练(2021-2022学年 考试时间:90分钟,总分100分)班级:_ 姓名:_ 总分:_题号一二三得分一、单选题(10小题,每小题3分,共计30分)1、据报道,新型冠状病毒的直径约为100纳米,1纳米=0.000000001米,则该病毒的直径用科学记数法表示为( )A米B米C米D米2、化简的结果是( )ABCD3、已知:1纳米1.0109米,若用科学记数法表示125纳米,则正确的结果是( )A1.25109米B1.25108米C1.25107米D125106米4、实验测得,某种新型冠状病毒的直径是120纳米(1纳米米),120纳米用科学记数法可表示为()A米
2、B米C米D米5、已知, , ,则m, n, p的大小关系是( )Am p nBn m pCp n mDn p m 6、已知实数,满足:,则的值为( )A1BC7D7、某种细胞的直径是0.0005mm,这个细胞的直径是( )AmmBmmCmmDmm8、随着北斗系统全球组网的步伐,北斗芯片的研发生产技术也在逐步成熟,国产北斗芯片可支持接收多系统的导航信号,应用于自动驾驶、无人机、机器人等高精度定位需求领域,将为中国北斗导航产业发展提供有力支持目前,该芯片工艺已达22纳米(即0.000000022米)则数据0.000000022用科学记数法表示为()A0.22107B2.2108C22109D221
3、0109、下列各式计算正确的是()ABC D10、研究发现新冠肺炎病毒大小约为0.000000125米,数0.000000125用科学记数法表示为()A125109B12.5108C1.25107D1.25106二、填空题(5小题,每小题4分,共计20分)1、3031()2_2、用小数表示应为_3、计算:2223_4、这些年“舌尖上的浪费”仍有发生疫情之下,全球近690000000人处于饥饿状态习总书记居安思危,以身作则,亲自践行光盘行动将数据690000000用科学记数法表示为_5、计算:已知10x=20,10y=50-1,求4x22y=_三、解答题(5小题,每小题10分,共计50分)1、解
4、方程:2、计算: (1); (2)3、(1)计算:;(2)先化简,再求值,其中,4、已知,(1)当时,求的值;(2)求的值5、计算:-参考答案-一、单选题1、B【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a10-n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数n由原数左边起第一个不为零的数字前面的0的个数所决定【详解】解:100纳米米米,故选B【点睛】本题考查了用科学记数法表示较小的数,一般形式为a10-n,其中1|a|10,n为由原数左边起第一个不为零的数字前面的0的个数所决定2、D【分析】由题意直接根据负整数指数幂的意义进行计算即可求出答案【详解】解:.故选
5、:D.【点睛】本题考查负整数指数幂的意义,熟练掌握负整数指数幂的运算法则即是解题的关键.3、C【分析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值10时,n是正数;当原数的绝对值1时,n是负数【详解】解:125纳米=1.25107米,故选:C【点睛】此题考查科学记数法,注意n的值的确定方法,当原数小于1时,n是负整数,等于原数左数第一个非零数字前0的个数,按此方法即可正确求解4、B【分析】科学记数法的表示形式为的形式,其中,为整数确定的值时,要看把原数变成时,小数点移动了多少位
6、,的绝对值与小数点移动的位数相同【详解】解:120纳米米米故选:B【点睛】此题考查科学记数法的表示方法科学记数法的表示形式为的形式,其中,为整数,表示时关键要确定的值以及的值5、D【分析】根据零指数幂、负指数幂以及乘方的运算求得,比较即可【详解】解:,故选D【点睛】此题考查了零指数幂、负指数幂以及乘方的运算,涉及了有理数大小的比较,解题的关键是根据有关运算,正确求出的值6、B【分析】根据移项可得,将化为,根据非负数的性质确定的值,进而求得的值,代入代数式求解即可【详解】将移项可得, 解得代入解得故选B【点睛】本题考查了完全平方公式的应用,非负数的性质,负整指数幂的计算,根据完全平方公式变形是解
7、题的关键7、C【分析】根据科学记数法可直接进行求解【详解】解:由题意得:0.0005mm=mm;故选C【点睛】本题主要考查科学记数法,熟练掌握科学记数法是解题的关键8、B【分析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同【详解】解:0.0000000222.2108故选:B【点睛】此题考查了科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要确定a的值以及n的值9、A【分析】根据各自的运算公式计算判断即可【详解】,A正确;,B不正确;,C不正
8、确;,D不正确;故选A【点睛】本题考查了同底数幂的乘法,积的乘方,负整数指数幂,完全平方公式,熟练掌握各公式是解题的关键10、C【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a10-n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数n由原数左边起第一个不为零的数字前面的0的个数所决定【详解】解:0.000000125=1.2510-7,故选:C【点睛】本题考查用科学记数法表示较小的数,一般形式为a10-n,其中1|a|10,n为由原数左边起第一个不为零的数字前面的0的个数所决定二、填空题1、27【分析】原式先计算零指数幂和负整数指数幂,再计算乘法运算,即可得到结果【
9、详解】解:3031()2=27故答案为:27【点睛】本题考查了零指数幂、负整数指数幂以有理数的乘除运算,熟练掌握运算法则是解答本题的关键2、-0.00016【分析】根据负整数指数幂的意义得出,即可求解【详解】解:故答案为【点睛】本题考查了科学记数法,解题关键是熟知:绝对值大于0小于1的数的科学记数法的形式(,n为正整数)中,n为原数从左至右第一个非零数前面0的个数3、2【分析】根据同底数幂的除法法则,即可求解【详解】解:2223=22-(-3)=2,故答案是:2【点睛】本题主要考查同底数幂的除法法则,负整数指数幂,熟练掌握同底数幂相除,底数不变,指数相减,是解题的关键4、6.9108【分析】科
10、学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同【详解】解:将数据690000000用科学记数法表示为6.9108故答案为:6.9108【点睛】此题考查科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要确定a的值以及n的值5、64【分析】根据10x=20,10y=50-1,可求出x-y=3,再将4x22y转化为4x-y代入计算即可【详解】解:10x=20,10y=50-1,10x10y=2050-1,即10x-y=1000=103,x-y=3,4x
11、22y=4x-y=43=64,故答案为:64【点睛】本题考查了同底数幂的除法,幂的乘方与积的乘方以及负整数指数幂,掌握同底数幂的除法,幂的乘方与积的乘方以及负整数指数幂的运算法则是正确计算的前提三、解答题1、【分析】方程两边同乘(x3)把分式方程化简为整式方程,解整式方程,最后验根即可【详解】解:经检验:是原方程的解所以原方程的解为【点睛】本题考查了解分式方程,熟练解分式方程的步骤是解答此题的关键注意:单独数字也要乘以最简公因式2、(1);(2)【分析】(1)先算乘方,再算括号,后算除法即可;(2)根据单项式与多项式的乘法法则计算即可;【详解】解:(1)原式=;(2)原式=【点睛】本题考查了负
12、整数指数幂、零指数幂的意义,以及单项式与多项式的乘法计算,熟练掌握运算法则是解答本题的关键3、(1)4;(2),【分析】(1)根据有理数的乘方、绝对值、零指数幂和负整数指数幂的计算方法可以解答本题;(2)根据完全平方公式、多项式乘多项式、多项式除以单项式可以化简题目中的式子,然后将x、y的值代入化简后的式子即可解答本题【详解】(1)解:原式;(2)解:原式.当,时,原式.【点睛】本题考查整式的混合运算、实数的运算、零指数幂和负整数指数幂,解答本题的关键是明确它们各自计算方法,求出所求式子的值4、(1);(2)37【分析】(1)根据同底数幂的乘法及幂的乘方可直接进行求解;(2)根据完全平方公式及平方差公式可直接进行求解【详解】解:(1),原式=;(2),=37【点睛】本题主要考查同底数幂的运算、负指数幂及乘法公式,熟练掌握同底数幂的运算、负指数幂及乘法公式是解题的关键5、【分析】根据分式的加减混合运算法则先对每一项因式分解,然后通分成同分母分式,然后根据同分母分式加减混合运算法则计算求解即可【详解】解:原式【点睛】此题考查了分式的加减混合运算,解题的关键是熟练掌握分式的加减混合运算法则