《基础强化京改版九年级数学下册第二十六章-综合运用数学知识解决实际问题同步训练试卷(精选含详解).docx》由会员分享,可在线阅读,更多相关《基础强化京改版九年级数学下册第二十六章-综合运用数学知识解决实际问题同步训练试卷(精选含详解).docx(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、第二十六章 综合运用数学知识解决实际问题同步训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、鄞州区有两大美丽的公园,分别是鄞州公园和鄞州湿地公园,两大公园的占地面积约达800000平方米,若按比例尺1
2、:2000缩小后的面积大约相当于()A一个篮球场的面积B一个乒乓球台的面积C数学课本封面的面积D宁波日报一个版面的面积2、方程的不同有理根的个数是( )A0B1C2D43、一个密闭不透明的盒子里有若干个白球,在不允许将球倒出来的情况下,为估计白球的个数,小刚向其中放入8个黑球,摇匀后从中随机摸出一个球记下颜色,再把它放回盒中,不断重复,共摸球400次,其中88次摸到黑球,估计盒中大约有白球()A42个B36个C30个D28个4、郑州市某校建立了一个学生身份识别系统利用图1的二维码可以进行身份识别,图2是某个学生的识别图案,黑色小正方形表示1,白色小正方形表示0将第一行数字从左到右依次记为a,b
3、,c,d,那么可以转换为该生所在班级序号,其序号为a23+b22+c21+d20,如图2第一行数字从左到右依次为0,1,0,1,序号为023+122+021+1205,表示该生为5班学生,请问,表示4班学生的识别图案是()ABCD5、如图A、B、C是固定在桌面上的三根立柱,其中A柱上穿有三个大小不同的圆片,下面的直径总比上面的大现想将这三个圆片移动到B柱上,要求每次只能移动一片(叫移动一次),被移动的圆片只能放入A、B、C三个柱之一且较大的圆片不能叠在小片的上面,那么完成这件事情至少要移动圆片的次数是()A6B7C8D96、任意掷一枚骰子,下列情况出现的可能性比较大的是( )A面朝上的点数是6
4、B面朝上的点数是偶数C面朝上的点数大于2D面朝上的点数小于27、九章算术是我国古代的数学著作,是算经十书中最重要的一种,大约成书于公元前200前50年九章算术不仅最早提到分数问题还详细记录了方程等内容的类型及详细解法,是当时世界上最为重要的数学文献公元263年,为九章算术作注本的数学家是()A欧拉B刘微C祖冲之D华罗庚8、某校数学兴趣小组为测量学校旗杆AC的高度,在点F处竖立一根长为1.5米的标杆DF,如图所示,量出DF的影子EF的长度为1米,再量出旗杆AC的影子BC的长度为6米,那么旗杆AC的高度为( )A6米B7米C8.5米D9米9、根据居民家庭亲子阅读消费调查报告中的相关数据制成扇形统计
5、图,由图可知,下列说法错误的是( )A扇形统计图能反映各部分在总体中所占的百分比B每天阅读30分钟以上的居民家庭孩子超过50%C每天阅读1小时以上的居民家庭孩子占20%D每天阅读30分钟至1小时的居民家庭孩子对应扇形的圆心角是10810、,则( )AB0C32D64第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、你知道吗,对于一元二次方程,我国古代数学家还研究过其几何解法呢!以方程即为例加以说明数学家赵爽(公元34世纪)在其所著的勾股圆方图注中记载的方法是:构造图(如下面左图)中大正方形的面积是,其中它又等于四个矩形的面积加上中间小正方形的面积,即,据此易得那么在下面右
6、边三个构图(矩形的顶点均落在边长为1的小正方形网格格点上)中,能够说明方程的正确构图是_(只填序号)2、定义一种新运算“”规则如下:对于两个有理数,若,则_3、函数的最小值是_4、国庆期间,小明和妈妈去上海海洋水族馆参观,共用了小时,其中坐车用了1小时20分钟,吃午饭用了小时,那么他们实际参观用了_小时5、有15袋糖果,其中14袋同样重,有一袋少了2颗,质量稍轻,如果用天平称,至少称_次才能保证找出这袋稍轻的糖果.三、解答题(5小题,每小题10分,共计50分)1、概念学习规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如222,(3)(3)(3)(3)等类比有理数的乘方,我们把22
7、2记作2,读作“2的圈3次方”,(3)(3)(3)(3)记作(3),读作“3的圈4次方”,一般地,把(a0)记作a,读作“a的圈n次方”初步探究(1)直接写出计算结果:2=_,=_;(2)关于除方,下列说法错误的是_A任何非零数的圈2次方都等于1; B对于任何正整数n,1=1; C3=4 D负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数深入思考:我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?(1)试一试:仿照上面的算式,将下列运算结果直接写成幂的形式(3)=_;5=_;=_(2)想一想:将一个非零有理数a的圈n次方写成幂
8、的形式等于_;(3)算一算:2、函数,若自变量x取值范围内存在,使成立,则称以为坐标的点为函数图像上的不动点(如函数也可记为,当时的函数值可记为(1)若函数有两个关于原点对称的不动点,求应满足的条件;(2)在(1)的条件下,若,直线与y轴、x轴分别相交于两点,在的图象上取一点P(P点的横坐标大于2),过P作轴,垂足是Q,若四边形的面积等于2,求P点的坐标(3)定义在实数集上的函数,对任意的x有恒成立下述命题“若函数的图像上存在有限个不动点,则不动点有奇数个”是否正确?若正确,给予证明;若不正确,举反例说明3、佳佳和小超玩一个抽卡片游戏:有一叠卡片,每张上面都写着一个数字,二人轮流从中抽取,若抽
9、到的卡片上的数字大于10,就加上这个数字,若抽到的卡片上的数字不大于10,就减去这个数字.第一轮抽卡完毕(每人抽4张),二人抽到的卡片如下图所示.若规定从0开始计算,结果小者为胜,那么第一轮抽卡谁获胜?4、问题提出:(1)如图1,已知ABC,试确定一点D,使得以A,B,C,D为顶点的四边形为平行四边形,请画出这个平行四边形;问题探究:(2)如图2,在矩形ABCD中,AB=4,BC=10,若要在该矩形中作出一个面积最大的BPC,且使BPC90,求满足条件的点P到点A的距离;问题解决:(3)如图3,有一座草根塔A,按规定,要以塔A为对称中心,建一个面积尽可能大的形状为平行四边形的草根景区BCDE根
10、据实际情况,要求顶点B是定点,点B到塔A的距离为50米,CBE=120,那么,是否可以建一个满足要求的面积最大的平行四边形景区BCDE?若可以,求出满足要求的平行四边形BCDE的最大面积;若不可以,请说明理由(塔A的占地面积忽略不计)5、一个装满稻谷的圆柱形粮屯,底面积是3.2平方米,高是1.8米若把这些稻谷堆成高是0.9米的圆锥形谷堆,占地面积是多少平方米? -参考答案-一、单选题1、D【分析】求按比例尺缩小后面积,再根据实际判断.【详解】依题意得,缩小后面积是:800000平方米20002=0.2平方米,大约是宁波日报一个版面的面积.故选D【点睛】本题考核知识点:比例尺. 解题关键点:理解
11、比例尺的意义.2、C【分析】首先观察x=1是方程的一个根故可以把方程x4-6x3+13x2-12x+4=0化成(x-1)(x3-5x2+8x-4)=0,再次发现x=1是方程x3-5x2+8x-4=0的一个有理根,于是原方程可以化为(x-1)2(x2-4x+4)=0,即可求出不同有理数的个数【详解】解:观察可知x=1是方程x4-6x3+13x2-12x+4=0的一个根,即(x-1)(x3-5x2+8x-4)=0,观察可知x=1还是x3-5x2+8x-4=0,原方程可以化为(x-1)2(x2-4x+4)=0,解得x=1或2,原方程的不同有理根有2个,故选C【点睛】本题主要考查高次方程的知识点,解答
12、本题的关键是把方程x4-6x3+13x2-12x+4=0进行因式分解,此题难度不大3、D【详解】试题解析:设盒子里有白球x个,根据得: 解得:x=28经检验得x=28是方程的解答:盒中大约有白球28个故选D4、C【分析】仿照二维码转换的方法求出所求即可【详解】解:根据题意得:023+122+021+0204,则表示4班学生的识别图案是选项C.故选C【点睛】本题考查用数字表示事件,零指数幂,弄清题中的转换方法是解题的关键5、B【分析】应先把最小的移动到B,较大的移动到C,然后把最小的移动到C上,把最大的移动到B,把较小的移动到A,把较大的移动到B,最后把最小的移动到B共需7次【详解】解:需分两步
13、完成:(设最大的圆片为3,较小的为2,最小的为1)先将最小的圆片移动到B柱上:1B,2C,1C,3B,此时完成了第一步,移动了4次;将最大圆片放到B柱后,再将剩下两个,按序排列:1A,2B,1B;此时完成了第二步,移动了3次,因此一共移动了3+4=7次故选B【点睛】解决本题需注意第一步就应把最小的圆片移动到最终要到达的位置上6、C【分析】根据题意与概率的计算公式,比较四个选项中包含的情况数目,比较可得答案【详解】解:A面朝上的点数为6点的情况为1种;B面朝上的点数是偶数的情况为3种;C面朝上的点数大于2的情况为4种;D面朝上的点数小于2的情况为1种,比较可得:C包含的情况数目最多,故其概率最大
14、;故选C【点睛】可能性大小的比较:只要总情况数目相同,谁包含的情况数目多,谁的可能性就大;反之也成立;若包含的情况相等,那么它们的可能性就相等7、B【分析】为九章算术作注本的数学家是刘微.【详解】为九章算术作注本的数学家是刘微.故选B【点睛】本题考查数学常识;掌握教材阅读材料中的数学常识是解题的关键8、D【解析】试题分析:在同一时刻物高和影长成正比,即在同一时刻的两个物体,影子,经过物体顶部的太阳光线三者构成的两个直角三角形相似根据相似三角形的对应边的比相等,即可求解解:DEAB,DFAC,DEFABC,=,即=,AC=61.5=9米故答案为:9【点评】此题考查相似三角形的实际运用,解题时关键
15、是找出相似的三角形,然后根据对应边成比例列出方程,建立适当的数学模型来解决问题9、C【分析】根据扇形统计图中的百分比的意义逐一判断即可得【详解】解:A扇形统计图能反映各部分在总体中所占的百分比,此选项正确;B每天阅读30分钟以上的居民家庭孩子的百分比为,超过,此选项正确;C.每天阅读1小时以上的居民家庭孩子占,此选项错误;D.每天阅读30分钟至1小时的居民家庭孩子对应扇形的圆心角是,此选项正确;故选C【点睛】本题主要考查扇形统计图,扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数10、C【分析】将x=1代入可知a12+a11+a10+a1x+a0的值,将x=-1代入
16、可求得a12-a11+a10-a9+-a1x+a0的值,然后将两式相加可求得a12+a10+a8+a6+a4+a2+a0的值,最后将x=0代入可求得a0的值【详解】解:将x=1代入得:a12+a11+a10+a1x+a0=64,将x=-1代入得:a12-a11+a10-a9+-a1x+a0=0,+得:2(a12+a10+a8+a6+a4+a2+a0)=64a12+a10+a8+a6+a4+a2+a0=32将x=0代入得:a0=64a12+a10+a8+a6+a4+a2=32-64=-32故选:C【点睛】本题主要考查的是求代数式的值,特殊值法的应用是解题的关键二、填空题1、【分析】仿造案例,构造
17、面积是的大正方形,由它的面积为,可求出,此题得解【详解】解:即,构造如图中大正方形的面积是,其中它又等于四个矩形的面积加上中间小正方形的面积,即,据此易得故答案为【点睛】本题考查了一元二次方程的应用,仿造案例,构造出合适的大正方形是解题的关键2、【分析】根据给定新运算的运算法则可以得到关于x的方程,解方程即可得到解答【详解】解:由题意得:(5x-x)(2)=1,-2(5x-x)-(-2)=-1,-8x+2=-1,解之得:,故答案为【点睛】本题考查新定义下的实数运算,通过阅读题目材料找出有关定义和运算法则并应用于新问题的解决是解题关键 3、1016064【分析】根据绝对值的几何意义即可求出结果.
18、【详解】解:由题意可得:根据绝对值的几何意义,时,在1x2时,y有最小值,时,在x=2时,y有最小值,时,在2x3时,y有最小值,时,在x=3时,y有最小值,可发现:奇数个时,取x=中间数,y有最小值,偶数个时,取中间两数之一,y有最小值,函数表示数轴上分别到1,2,3,4,2016的点的距离之和,当1008x1009时,原式取得最小值,设x=1008,则最小值=(1+2+3+1007)+(1+2+3+1008)=1016064.故答案为:1016064.【点睛】本题考查了求函数的最值,绝对值的几何意义,解题的关键是举例发现规律,再根据规律求解.4、【分析】用总时间减去坐车和吃午饭的时间即为实
19、际参观的时间 【详解】1小时20分钟小时,(小时)故答案为【点睛】本题考查分数加减法的应用,根据题意正确列出算式并注意单位的统一是解题关键5、3【分析】根据题意,首先把15袋糖果平均分成三组,每组5袋,把任意的两组称第一次,找到较轻的一组,然后把这组分成2袋,2袋,1袋的三组,把相同袋数的两组称第二次,找到较轻的那组,若同样重则剩下的那袋即为少了2颗的那袋,若不一样重,则还需要找到较轻的那组中的两袋称第三次,即可最终确保找到少了2颗的那袋.【详解】首先把15袋糖果平均分成三组,每组5袋,把少了两颗的那袋记作A,把其中任意两组放在天平上称第一次,此时若平衡,则可判断A在没称的那一组,若此时不平衡
20、,则可判断A在称量两组中较轻的一组;然后把可判断出A的一组中的5袋,继续分成2袋,2袋,1袋这样的a,b,c三组,此时把a组和b组放天平称第二次,若平衡,则A就是c组里面的这袋,若不平衡,则A在a组和b组中较轻的那组中,因为此时出现两种情况,只有在平衡的情况才能找到A,所以要进行第三次称量,第三次只要把上一次称量较轻那组中的两袋分开称,则较轻的为A.所以至少需要称量3次.故答案为3【点睛】本题可以进行多袋分组,用整体重量判断较轻的那袋的所处的分组,慢慢的缩小范围,直至确定找到.三、解答题1、初步探究(1);8;(2)C;深入思考(1);28;(2);(3)原式=1 【解析】初步探究(1);8;
21、(2)C;深入思考(1);28;(2);(3)原式=1 2、(1)且9;b=3;(2);(3)正确;证明见解析【分析】(1)根据不动点的定义,得出方程有两个不等的实根,且互为相反数,转化为二次方程,利用根与系数的关系,即可求解;(2)由(1)和a=2,求得,设上任意一点,根据S四边形AOQP-,列出方程,即可求解;(3)定义在R上的奇函数必有0,再设为函数图像上的不动点,结合奇函数的定义得出也为函数图像上的不动点,即可求解【详解】解:(1)由题意,函数有两个关于原点对称的不动点,可得有两个互为相反数的根,即有两个互为相反数的根,带入得,两式相减得,所以b=3,方程变为,所以a0且a9;(2)由
22、(1)得a=2,b=3,所以l:y=-x+2,即A(0,2),B(2,0),设上任意一点(t2),所以Q(t,0)(t2),又因为,所以,解得,所以P点的坐标;(3)正确在,令x=0,可得,所以,所以(0,0)为函数的不动点,设为函数图像上的不动点,则,所以,所以也为函数图像上的不动点【点睛】本题主要考查了函数的新定义的应用,以及函数与方程的综合应用,其中解答中正确理解函数的新定义,以及合理应用函数的奇偶性求解是解答的关键,着重考查推理与运算能力3、小超【解析】【分析】根据题中的规则求出佳佳与小超两人的成绩,比较即可得到结果【详解】解:根据题意得:-(-4.5)+11-5.5-10=4.5+1
23、1-5.5-10=0;10.5-(-4)-5.2-9.8=10.5+4-5.2-9.8=14.5-15=-0.5,-0.50,小超获胜【点睛】此题考查了有理数加减混合运算的应用,弄清题意是解本题的关键4、(1)点D所在的位置见解析;(2)AP的长为2或8;(3)可以,符合要求的BCDE的最大面积为.【分析】(1)根据平行四边形的特点,分三种情况利用平移的性质得到点D的位置即可;(2)由题意可知点P在边AD上时,BPC的面积最大,为满足BPC90,根据AB比BC的一半小,以BC为直径画圆,圆与AD的交点即可满足条件的点P,然后根据已知条件利用勾股定理进行求解即可;(3)可以,如图所示,连接BD,
24、由已知可得BD=100,BED=60,作BDE的外接圆O,则点E在优弧上,取的中点,连接,则可得为正三角形,连接并延长,经过点A至,使,连接,可得四边形为菱形,且,作EFBD,垂足为F,连接EO,则,则有,据此即可求得答案.【详解】(1)如图所示,有三个符合条件的平行四边形;(2)如图,AB=4,BC=10,取BC的中点O,则OBAB,以点O为圆心,OB长为半径作O,O一定于AD相交于两点,连接,BPC=90,点P不能在矩形外;BPC的顶点P在或位置时,BPC的面积最大,作BC,垂足为E,则OE=3,由对称性得,综上可知AP的长为2或8;(3)可以,如图所示,连接BD,A为平行四边形BCDE的对称中心,BA=50,CBE=120,BD=100,BED=60,作BDE的外接圆O,则点E在优弧上,取的中点,连接,则,且=60,为正三角形,连接并延长,经过点A至,使,连接,BD,四边形为菱形,且,作EFBD,垂足为F,连接EO,则,所以符合要求的BCDE的最大面积为.【点睛】本题考查了直径所对的圆周角是直角,圆周角定理,等边三角形的判定与性质,菱形的判定与性质等,综合性较强,难度较大,正确画出符合题意的图形是解题的关键.5、19.2【解析】【试题分析】根据体积相等列方程【试题解析】设圆锥形谷堆占地面积为x则3.21.8=x0.93x=19.2