《2021-2022学年度北师大版八年级数学下册第四章因式分解专项练习练习题.docx》由会员分享,可在线阅读,更多相关《2021-2022学年度北师大版八年级数学下册第四章因式分解专项练习练习题.docx(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、北师大版八年级数学下册第四章因式分解专项练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如果a、b分别是的整数部分和小数部分,那么的值是( )A8BC4D2、运用平方差公式对整式进行因式分解时,公式中
2、的可以是( )ABCD3、下列各式由左边到右边的变形中,是因式分解的为( )Aa(x+y)ax+ayB10x25x5x(2x1)Cx24x+4(x4)2Dx216+3x(x+4)(x4)+3x4、下列由左到右的变形,属于因式分解的是( )ABCD5、可以被24和31之间某三个整数整除,这三个数是( )A25,26,27B26,27,28C27,28,29D28,29,306、下列等式中,从左到右是因式分解的是( )ABCD7、下列因式分解中,正确的是( )Ax2-4x+4=xx-4+4B4a2-12a+9=(2a+3)2Cab2-c2=ab2-c2D(x+3)2-4=x+5x+18、已知a2(
3、b+c)b2(a+c)2021,且a、b、c互不相等,则c2(a+b)2020()A0B1C2020D20219、下列等式中,从左到右的变形是因式分解的是( )ABCD10、三角形的三边长分别为a,b,c,且满足,则该三角形的形状是( )A任意等腰三角形B等腰直角三角形C等腰三角形或直角三角形D任意直角三角形第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、分解因式:mx24mx4m_2、分解因式:_3、分解因式:x27xy18y2_4、如图,将长方形纸片沿折叠,使点A落在边上点处,点D的对应点为,连接交边于点E,连接,若,点为的中点,则线段的长为_5、因式分解:_三、解
4、答题(5小题,每小题10分,共计50分)1、因式分解:(1)(2)(3)2、因式分解:3、阅读下列因式分解的过程,再回答所提出的问题:1+x+x(x+1)+x(x+1)2=(1+x)1+x+x(x+1)=(1+x)2(1+x)=(1+x)3(1)上述分解因式的方法是 ,共应用了 次(2)若分解1+x+x(x+1)+x(x+1)2+x(x+1)2021,则需应用上述方法 次,结果是 (3)分解因式:1+x+x(x+1)+x(x+1)2+x(x+1)n(n为正整数)结果是 4、分解因式(1)(2)5、因式分解:(1); (2)-参考答案-一、单选题1、B【分析】先求得的范围,进而求得的范围即可求得
5、的值,进而代入代数式求值即可【详解】则a、b分别是的整数部分和小数部分,则故选B【点睛】本题考查了估算无理数的大小,二次根式的混合运算,求得的值是解题的关键2、C【分析】运用平方差公式分解因式,后确定a值即可【详解】=,a是2mn,故选C【点睛】本题考查了平方差公式因式分解,熟练掌握平方差公式是解题的关键3、B【分析】根据因式分解定义,把一个多项式化为几个整式的积的形式,对各选项进行一一分析即可【详解】解:A. a(x+y)ax+ay,多项式乘法,故选项A不合题意B. 10x25x5x(2x1)是因式分解,故选项B符合题意;C. x24x+4(x2)2因式分解不正确,故选项C不合题意;D. x
6、216+3x(x+4)(x4)+3x,不是因式分解,故选项D不符合题意故选B【点睛】本题考查因式分解,掌握因式分解的定义是解题关键4、A【分析】直接利用因式分解的定义分别分析得出答案【详解】解:、,是因式分解,符合题意、,是整式的乘法运算,故此选项错误,不符合题意;、,不符合因式分解的定义,故此选项错误,不符合题意;、,不符合因式分解的定义,故此选项错误,不符合题意;故选:A【点睛】本题主要考查了因式分解的意义,解题的关键是正确把握分解因式的定义,即分解成几个式子相乘的形式5、B【分析】先提取公因式27,再逐步利用平方差公式分解因式,即可得到答案.【详解】解: 所以可以被26,27,28三个整
7、数整除,故选B【点睛】本题考查的是利用平方差公式分解因式,掌握平方差公式的特点并灵活应用是解本题的关键.6、B【分析】根据因式分解的定义:把一个多项式化成几个整式积的形式,像这样的式子变形叫做这个多项式的因式分解,进行求解即可【详解】解:A、,不是整式积的形式,不是因式分解,不符而合题意;B、,是因式分解,符合题意;C、,不是乘积的形式,不是因式分解,不符合题意;D、,不是乘积的形式,不是因式分解,不符合题意;故选B【点睛】本题主要考查了因式分解的定义,熟知定义是解题的关键7、D【分析】A、原式利用完全平方公式分解得到结果,即可作出判断;B、原式利用完全平方公式分解得到结果,即可作出判断;C、
8、原式不能分解,不符合题意;D、原式利用平方差公式分解得到结果,即可作出判断【详解】解:A、原式=(x-2)2,不符合题意;B、原式=(2a-3)2,不符合题意;C、原式不能分解,不符合题意;D、原式=(x+3+2)(x+3-2)=(x+5)(x+1),符合题意故选:D【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键8、B【分析】根据题意先通过已知等式,找到a,b,c的关系再求值即可得出答案【详解】解:a2(b+c)b2(a+c)a2b+a2cab2b2c0ab(ab)+c(a+b)(ab)0(ab)(ab+ac+bc)0aba2(b+c)2021a(ab+a
9、c)2021a(bc)2021abc2021abc2021原式c(ac+bc)2020c(ab)2020abc2020202120201故选:B【点睛】本题考查用因式分解求代数式的值,利用题中等式得到ab+bc+ac=0是解答本题的关键9、C【分析】根据因式分解的定义:把一个多项式化成几个整式乘积的形式,即可进行判断【详解】A. ,变形是整式乘法,不是因式分解,故A错误;B. ,右边不是几个因式乘积的形式,故B错误;C. ,把一个多项式化成两个整式乘积的形式,变形是因式分解,故C正确;D. ,变形是整式乘法,不是因式分解,故D错误【点睛】本题考查因式分解的定义,掌握因式分解的定义是解题的关键1
10、0、C【分析】把所给的等式进行因式分解,求出三角形三边的关系,进而判断三角形的形状【详解】解:,已知的三边长为,=0,或,即,或,的形状为等腰三角形或直角三角形,故选C【点睛】本题考查了分组分解法分解因式,勾股定理的逆定理,等腰三角形的判定等等,利用因式分解最后整理成多项式的乘积等于0的形式是解题的关键二、填空题1、m(x2)2【分析】原式提取公因式,再利用完全平方公式分解即可【详解】解:原式=m(x2-4x+4)=m(x-2)2,故答案为:【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键2、【分析】首先提公因式3x,然后利用完全平方公式因式分解即可分解【详
11、解】解:故答案为:【点睛】本题考查了提公因式法与公式法分解因式,掌握因式分解的方法与步骤,熟记公式是解题关键3、【分析】根据十字相乘法因式分解即可【详解】x27xy18y2,故答案为:【点睛】本题考查了因式分解,掌握因式分解的方法是解题的关键4、【分析】连接,勾股定理求得,进而证明,设,根据,以及三边关系建立方程组,解方程组求解即可【详解】解:如图,连接,折叠,四边形是长方形,,,设则是的中点,在中, 在中,即解得,又设在中即又由可得将代入得-得解得即故答案为:【点睛】本题考查了勾股定理,折叠问题,因式分解,三角形全等的性质与判定,解二元一次方程组,掌握折叠的性质是解题的关键5、【分析】原式提
12、取公因式y2,再利用平方差公式分解即可【详解】解:原式=,故答案为:【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解题的关键三、解答题1、(1);(2);(3)【分析】(1)利用提取公式法因式分解即可;(2)利用提取公式法因式分解即可;(3)提取公因式2y,在利用完全平方公式因式分解即可【详解】解:(1);(2)(3)【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键2、【分析】首先对后面三项利用完全平方公式进行因式分解,然后利用平方差公式因式分解即可【详解】解:原式【点睛】此题考查了因式分解的方法,解题的关键是熟练掌握因式分解的方法
13、因式分解的方法有:提公因式法,平方差公式法,完全平方公式法,十字相乘法等3、(1)提公因式法;2;(2)2021;(x+1)2022;(3)(1+x)n+1【分析】(1)直接利用已知解题方法分析得出答案;(2)结合(1)中解题方法得出答案;(3)结合(1)中解题方法得出答案【详解】解:(1)上述分解因式的方法是提公因式法,共应用了2次;故答案为:提公因式法; 2;(2)若分解1+x+x(x+1)+x(x+1)2+x(x+1)2021,则需应用上述方法2021次,结果是(x+1)2022;故答案为:2021;(x+1)2022;(3)1+x+x(x+1)+x(x+1)2+x(x+1)n=(1+x
14、)n+1故答案为:(1+x)n+1【点睛】此题主要考查了提取公因式法以及数字变换规律,正确得出次数变化规律是解题关键4、(1)3x(1+2x)(1-2x);(2)(5a+b)(a+5b)【分析】(1)先提取公因式3x,再根据平方差公式进行二次分解即可求得答案;(2)根据完全平方公式进行分解即可【详解】(1)3x12x3=3x(14x2)=3x(12x)(1+2x)(2)9(a+b)24(ab)2=3(a+b2-2(a-b)2=3(a+b)+2(a-b)3(a+b)-2(a-b)=(3a+3b+2a-2b)(3a+3b-2a+2b)=(5a+b)(a+5b)【点睛】此题考查提公因式法与公式法的综合运用,解题关键在于掌握运算法则5、(1);(2)(5a+b)(a+5b)【分析】(1)提取公因式,再利用完全平方公式进行因式分解即可;(2)利用平方差公式进行因式分解即可【详解】解:(1)(2)【点睛】此题考查了因式分解,涉及了完全平方公式和平方差公式,解题的关键是掌握因式分解的方法