《2018_2019学年九年级数学下册第三章圆3.1圆.doc》由会员分享,可在线阅读,更多相关《2018_2019学年九年级数学下册第三章圆3.1圆.doc(6页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、3.1圆一、教学目标1.知道圆的有关定义及表示方法.2.掌握点和圆的位置关系.3.会根据要求画出图形.二、课时安排1课时三、教学重点点和圆的位置关系.四、教学难点点和圆的位置关系.五、教学过程(一)导入新课生活中关于圆的图形展示,引导学生认识圆并谈谈对圆的理解:(二)讲授新课活动1:小组合作观察车轮,你发现了什么?车轮为什么做成圆形?车轮做成三角形、正方形可以吗?探究1: (1)如图,A,B表示车轮边缘上的两点,点O表示车轮的轴心,A,O之间的距离与B,O之间的距离有什么关系?(2)C表示车轮边缘上的任意一点,要使车轮能够平稳地滚动,C,O之间的距离与A,O之间的距离应满足什么关系?明确:车轮
2、边缘上任意两点到轴心的距离都相等, 任意一点到轴心的距离是一个定值.圆上的点到圆心的距离是一个定值.探究2:投圈游戏 一些学生正在做投圈游戏,他们呈“一”字排开,这样的队形对每个人公平吗?你认为他们应当排成什么样的队形? 为了使投圈游戏公平,现在有一条3米长的绳子, 你准备怎么办? 定义:平面上到定点的距离等于定长的所有点组成的图形叫做圆,其中定点称为圆心,定长称为半径.注意:1.从圆的定义可知:圆是指圆周而不是圆面.2.确定圆的要素是:圆心、半径.圆心确定圆的位置,半径确定圆的大小,确定一个圆,两者缺一不可.以点O为圆心的圆记作:O,读作:“圆O”.探究3:圆的有关性质战国时期的墨经一书中记
3、载:“圜,一中同长也 ”.古代的圜(hun)即圆,这句话是圆的定义,它的意思是: 圆是从中心到周界各点有相同长度的图形.提问: 如果一个点到圆心距离小于半径, 那么这个点在哪里呢?大于圆的半径呢?反过来呢?试根据圆的定义填空:1.圆上各点到_的距离都等于_.2.到定点的距离等于定长的点都在_.探究4:点与圆的位置关系如图,设O的半径为r,A点在圆内,B点在圆上,C点在圆外,那么OAr, OBr, OCr结论:点的位置可以确定该点到圆心的距离与半径的关系,反过来,已知点到圆心的距离与半径的关系也可以确定该点与圆的位置关系.1.画图:已知RtABC,ABBC,B=90,试以点B为圆心,BA为半径画
4、圆.2.根据图形回答下列问题:(1)看图想一想,RtABC的各个顶点与B在位置上有什么关系?答:点A在圆上.点B在圆内.点C在圆外(2)在以上三种关系中,点到圆心的距离与圆的半径在数量上有什么关系?活动2:探究归纳点在圆外,这个点到圆心的距离大于半径.点在圆上,这个点到圆心的距离等于半径.点在圆内,这个点到圆心的距离小于半径.(三)重难点精讲例1.已知O的半径r=2cm, 当OP 时,点P在O上;当OA=1cm时,点A在 ;当OB=4cm时,点B在 .答案:=2cm; O内; O外例2.已知:如图,矩形ABCD的对角线相交于点O,试猜想:矩形的四个顶点能在同一个圆上吗?答:在矩形ABCD中,有
5、OA=OB=OC=OD,四个顶点在同一个圆上,故矩形四个顶点能在同一个圆上.(四)归纳小结通过本课时的学习,需要我们掌握:1.从运动和集合的观点理解圆的定义.2.点与圆的位置关系.3.证明几个点在同一个圆上的方法.(五)随堂检测1.矩形ABCD中,AB8,点P在边AB上,且BP3AP,如果圆P是以点P为圆心,PD为半径的圆,那么下列判断正确的是( )A.点B,C均在圆P外 B.点B在圆P外、点C在圆P内C.点B在圆P内、点C在圆P外D.点B,C均在圆P内2.如图,王大爷家屋后有一块长12m,宽8m的矩形空地,他在以BC为直径的半圆内种菜,他家养的一只羊平时拴在A处,为了不让羊吃到菜,拴羊的绳子
6、可以选用( )A.3m B.5m C.7m D.9m3.已知三角形的三边长分别为3,4,5,则它的边与半径为1的圆的公共点个数所有可能的情况是_.(写出符合的一种情况即可)【答案】1. 【解析】选C.由题意知,PB=6,PA=2,PD=7, PC=9,所以点B在圆P内、点C在圆P外.2. 答案:A3. 【解析】圆心的位置不确定,交点个数共有5种情况即0、1、2、3、4.故答案为0或1或2或3、4.答案:2(符合答案即可)六板书设计3.1圆1.判断点与圆的位置关系的方法:设的半径为r,则点P与O的位置关系有(1)点P在上 OPr(2)点P在内 OPr(3)点P在外 OPr2.要证明几个点在同一个圆上,只要证明这几个点到同一个定点的距离相等.