《【历年真题】2022年重庆市南岸区中考数学三年真题模拟-卷(Ⅱ)(精选).docx》由会员分享,可在线阅读,更多相关《【历年真题】2022年重庆市南岸区中考数学三年真题模拟-卷(Ⅱ)(精选).docx(28页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、 线 封 密 内 号学级年名姓 线 封 密 外 2022年重庆市南岸区中考数学三年真题模拟 卷() 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列命题,是真命题的是( )A两条直线被第三条直线所截,内
2、错角相等B邻补角的角平分线互相垂直C相等的角是对顶角D若,则2、根据表中的信息判断,下列语句中正确的是( )1515.115.215.315.415.515.615.715.815.916225228.01231.04234.09237.16240.25243.36246.49249.64252.81256AB235的算术平方根比15.3小C只有3个正整数满足D根据表中数据的变化趋势,可以推断出将比256增大3.193、如图,二次函数yax2bxc(a0)的图像经过点A(1,0),点B(m,0),点C(0,m),其中2m3,下列结论:2ab0,2ac0,方程ax2bxcm有两个不相等的实数根,
3、不等式ax2(b1)x0的解集为0xm,其中正确结论的个数为( )A1B2C3D44、某物体的三视图如图所示,那么该物体形状可能是( )A圆柱B球C正方体D长方体5、如图,点,为线段上两点,且,设,则关于的方程的解是( )ABCD6、如图,在RtABC中,ACB90,AC4,BC3,将ABC沿AC翻折,得到ADC,再将ADC沿AD翻折,得到ADE,连接BE,则tanEBC的值为( ) 线 封 密 内 号学级年名姓 线 封 密 外 ABCD7、将正方体的表面分别标上数字1,2,3,并在它们的对面分别标上一些负数,使它的任意两个相对面的数字之和为0,将这个正方体沿某些棱剪开,得到以下的图形,这些图
4、形中,其中的x对应的数字是3的是()ABCD8、一张正方形纸片经过两次对折,并在如图所示的位置上剪去一个小正方形,打开后的图形是( )ABCD9、根据以下程序,当输入时,输出结果为( )ABCD10、如果一个矩形的宽与长的比等于黄金数(约为0.618),就称这个矩形为黄金矩形若矩形ABCD为黄金矩形,宽AD1,则长AB为()A1B1C2D2第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,已知ABCDEF它们分别交直线l1,l2于点A,D,F和点B,C,E,如果ADDF=23,BE=20,那么线段BC的长是_2、若A(x,4)关于y轴的对称点是B(3,y),则x=_
5、,y=_点A关于x轴的对称点的坐标是_3、若a11a+1,则整数a_4、如图,直线l1l2l3,直线l4,l5被直线l1、l2、l3所截,截得的线段分别为AB,BC,DE,EF, 线 封 密 内 号学级年名姓 线 封 密 外 若AB4,BC6,DE3,则EF的长是 _5、幻方历史悠久,传说最早出现在夏禹时代的“洛书”把洛书用今天的数学符号翻译出来,就是一个三阶幻方将数字19分别填入如图所示的幻方中,要求每一横行,每一竖行以及两条对角线上的数字之和都是15,则a的值为_三、解答题(5小题,每小题10分,共计50分)1、在平面直角坐标系xOy中,对于点P(x,y)和Q(x,y),给出如下定义:如果
6、y,那么称点Q为点P的“关联点”例如点(5,6)的“关联点”为点(5,6),点(-5,6)的“关联点”为点(-5,-6)(1)在点E(0,0),F(2,5),G(-1,-1),H(-3,5)中, 的“关联点”在函数y2x+1的图象上;(2)如果一次函数yx+3图象上点M的“关联点”是N(m,2),求点M的坐标;(3)如果点P在函数y-x2+4(-2xa)的图象上,其“关联点”Q的纵坐标y的取值范围是-4y4,求实数a的取值范围2、如图,AC,BD相交于的点O,且ABOC求证:AOBDOC3、已知在平面直角坐标系中,拋物线与轴交于点和点,与轴交于点 ,点是该抛物线在第一象限内一点,联结与线段相交
7、于点(1)求抛物线的表达式;(2)设抛物线的对称轴与线段交于点,如果点与点重合,求点的坐标;(3)过点作轴,垂足为点与线段交于点,如果,求线段的长度 线 封 密 内 号学级年名姓 线 封 密 外 4、已知抛物线的顶点为,且过点(1)求抛物线的解析式;(2)将抛物线先向左平移2个单位长度,再向下平移个单位长度后得到新抛物线若新抛物线与x轴交于A,B两点(点A在点B的左侧),且,求m的值;若,是新抛物线上的两点,当时,均有,请直接写出n的取值范围5、如图,在平面直角坐标系xOy中,抛物线与x轴交于点A(-1,0)和点B(3,0),与y轴交于点C,顶点为点D(1)求该抛物线的表达式及点C的坐标;(2
8、)联结BC、BD,求CBD的正切值;(3)若点P为x轴上一点,当BDP与ABC相似时,求点P的坐标-参考答案-一、单选题1、B【分析】利用平行线的性质、邻补角的定义及性质、对顶角的定义等知识分别判断后即可确定正确的选项【详解】解:A、两条平行直线被第三条直线所截,内错角相等,故原命题错误,是假命题,不符合题意;、邻补角的角平分线互相垂直,正确,是真命题,符合题意;、相等的角不一定是对顶角,故错误,是假命题,不符合题意;、平面内,若,则,故原命题错误,是假命题,不符合题意,故选:【点睛】考查了命题与定理的知识,解题的关键是了解平行线的性质、邻补角的定义及性质、对顶角的定义等知识,难度不大2、C【
9、分析】根据算术平方根的定义及表格中信息逐项分析即可【详解】A根据表格中的信息知:,故选项不正确;B根据表格中的信息知:,235的算术平方根比15.3大,故选项不正确;C根据表格中的信息知:,正整数或242或243,只有3个正整数满足,故选项正确;D根据表格中的信息无法得知的值, 线 封 密 内 号学级年名姓 线 封 密 外 不能推断出将比256增大3.19,故选项不正确故选:C【点睛】本题是图表信息题,考查了算术平方根,关键是正确利用表中信息3、C【分析】利用二次函数的对称轴方程可判断,结合二次函数过 可判断,由与有两个交点,可判断,由过原点,对称轴为 求解函数与轴的另一个交点的横坐标,结合原
10、二次函数的对称轴及与轴的交点坐标,可判断,从而可得答案.【详解】解: 二次函数yax2bxc(a0)的图像经过点A(1,0),点B(m,0), 抛物线的对称轴为: 2m3,则 而图象开口向上 即 故符合题意; 二次函数yax2bxc(a0)的图像经过点A(1,0), 则 则 故符合题意; 与有两个交点, 方程ax2bxcm有两个不相等的实数根,故符合题意;关于对称, 过原点,对称轴为 该函数与抛物线的另一个交点的横坐标为: 不等式ax2(b1)x0的解集不是0xm,故不符合题意;综上:符合题意的有故选:C【点睛】本题考查的是二次函数的图象与性质,利用二次函数的图象判断及代数式的符号,二次函数与
11、一元二次方程,不等式之间的关系,熟练的运用数形结合是解本题的关键.4、A【分析】根据主视图和左视图都是矩形,俯视图是圆,可以想象出只有圆柱符合这样的条件,因此物体的形状是圆柱【详解】解:根据三视图的知识,主视图以及左视图都为矩形,俯视图是一个圆, 线 封 密 内 号学级年名姓 线 封 密 外 则该几何体是圆柱 故选:A【点睛】本题考查由三视图确定几何体的形状,主要考查学生空间想象能力熟悉简单的立体图形的三视图是解本题的关键.5、D【分析】先根据线段的和差运算求出的值,再代入,解一元一次方程即可得【详解】解:,解得,则关于的方程为,解得,故选:D【点睛】本题考查了线段的和差、一元一次方程的应用,
12、熟练掌握方程的解法是解题关键6、A【分析】解:如图,连接,交于 过作于 先求解 设 再利用勾股定理构建方程组&x2+y2=9&3+x2+y2=2452 ,再解方程组即可得到答案.【详解】解:如图,连接,交于 过作于 由对折可得: AB=AD=5,ADCE,CH=HE, 12ADCH=12ACCD, CH=125,CE=245, 设 &x2+y2=9&3+x2+y2=2452 解得:&x=2125&y=7225 或&x=2125&y=-7225 (舍去)BM=6+2125=17125, tanEBC=722517125=72171=819. 故选A【点睛】 线 封 密 内 号学级年名姓 线 封
13、密 外 本题考查的是轴对称的性质,勾股定理的应用,一元二次方程的解法,锐角的正切,作出适当的辅助线构建直角三角形是解本题的关键.7、A【分析】根据正方体的表面展开图,相对的面之间一定相隔一个正方形,求出各选项的x的值即可【详解】解: Ax=-3Bx=-2Cx=-2Dx=-2故答案为:A【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题8、A【分析】由平面图形的折叠及图形的对称性展开图解题【详解】由第一次对折后中间有一个矩形,排除B、C;由第二次折叠矩形正在折痕上,排除D;故选:A【点睛】本题考查的是学生的立体思维能力及动手操作能力,关键是由平面图
14、形的折叠及图形的对称性展开图解答9、C【分析】根据流程图所示顺序,逐框分析代入求值即可【详解】解:当输入时,代入代入,则输出故选C【点睛】本题考查了程序流程图与代数式求值,正确代入求值是解题的关键10、C【分析】根据黄金矩形的定义,得出宽与长的比例即可得出答案【详解】解:黄金矩形的宽与长的比等于黄金数,故选:C【点睛】本题考查新定义题型,给一个新的定义,根据定义来解题,对于这道题是基础题型 线 封 密 内 号学级年名姓 线 封 密 外 二、填空题1、8【分析】根据平行线分线段成比例定理即可得【详解】解:ABCDEF,BCCE=ADDF=23,CE=32BC,BC+CE=BE=20,32BC+B
15、C=20,解得BC=8,故答案为:8【点睛】本题考查了平行线分线段成比例定理,熟练掌握平行线分线段成比例定理是解题关键2、3 4 (3,4) 【分析】根据点关于x轴对称则横坐标不变纵坐标互为相反数,关于y轴对称则纵坐标不变横坐标互为相反数即可求解【详解】解:A(x,4)关于y轴的对称点是B(-3,y),x=3,y=4,A点坐标为(3,4),点A关于x轴的对称点的坐标是(3,-4)故答案为:3;4;(3,-4)【点睛】本题考查了点关于坐标轴对称的特点:点关于x轴对称则横坐标不变纵坐标互为相反数,关于y轴对称则纵坐标不变横坐标互为相反数,由此即可求解3、3【分析】估算出11的取值范围即可求出a的值
16、【详解】解:91116,3114,a11a+1,a=3,故答案为:3【点睛】此题主要考查了估算无理数的大小,在确定形如a(a0)的无理数的整数部分时,常用的方法是“夹逼法”,其依据是平方和开平方互为逆运算4、4.5【分析】根据平行线分线段成比例定理列出比例式,把已知数据代入计算即可【详解】解:l1/l2/l3, 线 封 密 内 号学级年名姓 线 封 密 外 ABBC=DEEF,AB4,BC6,DE3,46=3EF,解得:EF4.5,故答案为:4.5【点睛】本题考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键5、6【分析】根据每行,每列,对角线上的三个数之和相等,先确定9右
17、边的数,再确定最中间的数,从而可得答案.【详解】解:每一横行数字之和是15, 最下面一行9右边的数字为15-4-9=2, 两条对角线上的数字之和是15, 中间的数字为15-8-2=5, 4+5+a=15, 解得a=6, 故答案为:6【点睛】本题主要考查一元一次方程的应用,根据每一横行,每一竖行以及两条对角线上的数字之和都是15得出中间的数是解题的关键三、解答题1、(1)F、H(2)点M(-5,-2)(3)【分析】(1)点E(0,0)的“关联点”是(0,0),点F(2,5)的“关联点”是(2,5),点G(-1,-1)的“关联点”是(-1,1),点H(-3,5)的“关联点”是(-3,-5),将点的
18、坐标代入函数y2x+1,看是否在函数图象上,即可求解;(2)当m0时,点M(m,2),则2m+3;当m0时,点M(m,-2),则2m+3,解方程即可求解;(3)如图为“关联点”函数图象:从函数图象看,“关联点”Q的纵坐标y的取值范围是-4y4,而-2xa,函数图象只需要找到最大值(直线y4)与最小值(直线y-4)直线xa从大于等于0开始运动,直到与y-4有交点结束都符合要求-4y4,只要求出关键点即可求解(1)解:由题意新定义知:点E(0,0)的“关联点”是(0,0),点F(2,5)的“关联点”是(2,5),点G(-1,-1)的“关联点”是(-1,1),点H(-3,5)的“关联点”是(-3,-
19、5),将点的坐标代入函数y2x+1,得到:F(2,5)和H(-3,-5)在函数y2x+1图象上;(2)解:当m0时,点M(m,2),则2m+3,解得:m-1(舍去);当m0时,点M(m,-2), 线 封 密 内 号学级年名姓 线 封 密 外 -2m+3,解得:m-5,点M(-5,-2);(3)解:如下图所示为“关联点”函数图象:从函数图象看,“关联点”Q的纵坐标y的取值范围是-4y4,而-2xa,函数图象只需要找到最大值(直线y4)与最小值(直线y-4)直线xa从大于等于0开始运动,直到与y-4有交点结束,都符合要求,-4-a2+4,解得:(舍去负值),观察图象可知满足条件的a的取值范围为:【
20、点睛】本题考查二次函数的性质,一次函数的性质等知识,解题的关键是理解题意,属于创新题目,读懂题意是解决本类题的关键2、见解析【分析】利用对顶角相等得到AOB=COD,再结合已知条件及相似三角形的判定定理即可求解【详解】证明:AC,BD相交于的点O,AOBDOC,又ABOC,AOBDOC【点睛】本题考查了相似三角形的判定定理:若一对三角形的两组对应角相等,则这两个三角形相似,由此即可求解3、(1)(2)(3)【分析】(1)将点和点代入,即可求解;(2)分别求出和直线的解析式为,可得,再求直线的解析式为,联立,即可求点;(3)设,则,则,用待定系数法求出直线的解析式为,联立,可求出,直线与轴交点,
21、则,再由,可得,则有方程,求出,即可求 线 封 密 内 号学级年名姓 线 封 密 外 (1)解:将点和点代入,;(2)解:,对称轴为直线,令,则,解得或,设直线的解析式为,设直线的解析式为,联立,或(舍,;(3)解:设,则, 线 封 密 内 号学级年名姓 线 封 密 外 设直线的解析式为,联立,直线与轴交点,轴,【点睛】本题是二次函数的综合题,解题的关键是熟练掌握二次函数的图象及性质,会求二次函数的交点坐标,本题计算量较大,准确的计算也是解题的关键4、(1)(2)【分析】(1)二次函数的顶点式为,将点坐标代入求解的值,回代求出解析式的表达式;(2)平移后的解析式为,可知对称轴为直线,设点坐标到
22、对称轴距离为,有点坐标到对称轴距离为,可得,解得,可知点坐标为,将坐标代入解析式解得的值即可;由题意知该抛物线图像开口向上,对称轴为直线,点关于对称轴对称的点的横坐标为,知,解得,由时,均有可得计算求解即可(1)解:的顶点式为 线 封 密 内 号学级年名姓 线 封 密 外 由题意得解得(舍去),抛物线的解析式为(2)解:平移后的解析式为对称轴为直线设点坐标到对称轴距离为,点坐标到对称轴距离为,解得点坐标为将代入解析式解得的值为8解:由题意知该抛物线图像开口向上,对称轴为直线,点关于对称轴对称的点的横坐标为,解得 时,均有解得的取值范围为【点睛】本题考查了二次函数的解析式、图象的平移与性质、与x
23、轴的交点坐标等知识解题的关键在于对二次函数知识的熟练灵活把握5、(1),点C的坐标为(0,-3)(2)(3)(-3,0)或(-,0)【分析】(1)把A、B两点坐标代入函数求出b,c的值即可求函数表达式;再令x=0,求出y从而求出C点坐标;(2)先求B、C、D三点坐标,再求证BCD为直角三角形,再根据正切的定义即可求出;(3)分两种情况分别进行讨论即可(1)解:(1)将A(-1,0)、B(3,0)代入,得 解得: 线 封 密 内 号学级年名姓 线 封 密 外 所以, 当x=0时,点C的坐标为(0,-3)(2)解:连接CD,过点D作DEy轴于点E,点D的坐标为(1,-4) B(3,0)、C(0,-3)、D(1,-4),E(0,-4),OB=OC=3,CE=DE=1,BC=,DC=,BD= BCD=90 tanCBD= (3)解:tanACO=,ACO=CBD OC =OB,OCB=OBC=45ACO+OCB =CBD+OBC即:ACB =DBO 当BDP与ABC相似时,点P在点B左侧(i)当时,BP=6P(-3,0) (ii)当时,BP=P(-,0) 综上,点P的坐标为(-3,0)或(-,0)【点睛】本题是二次函数的综合题,掌握相关知识是解题的关键