2022年精品解析北师大版八年级数学下册第六章平行四边形综合测试试题(含详细解析).docx

上传人:知****量 文档编号:28164236 上传时间:2022-07-26 格式:DOCX 页数:25 大小:408.31KB
返回 下载 相关 举报
2022年精品解析北师大版八年级数学下册第六章平行四边形综合测试试题(含详细解析).docx_第1页
第1页 / 共25页
2022年精品解析北师大版八年级数学下册第六章平行四边形综合测试试题(含详细解析).docx_第2页
第2页 / 共25页
点击查看更多>>
资源描述

《2022年精品解析北师大版八年级数学下册第六章平行四边形综合测试试题(含详细解析).docx》由会员分享,可在线阅读,更多相关《2022年精品解析北师大版八年级数学下册第六章平行四边形综合测试试题(含详细解析).docx(25页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、北师大版八年级数学下册第六章平行四边形综合测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知一个多边形的外角都等于,那么这个多边形的边数为( )A6B7C8D92、如图,一张含有80的三角形纸片,剪

2、去这个80角后,得到一个四边形,则1+2的度数是( )A200B240C260D3003、如图,在平面直角坐标系xOy中,已知直线AB与y轴交于点A(0,6),与x轴的负半轴交于点B,且BAO30, M、N是该直线上的两个动点,且MN2,连接OM、ON,则MON周长的最小值为 ( )A23B22C22D54、如图,四边形ABCD中,ADBC,点P是对角线BD的中点,E、F分别是AB、CD的中点,若EPF130,则PEF的度数为()A25B30C35D505、正多边形的一个内角等于144,则该多边形是( )A正八边形B正九边形C正十边形D正十一边形6、若一个正多边形每个外角都是36,则这个正多边

3、形的边数为()A8B9C10D117、如图,在中,点,分别是,上的点,点,分别是,的中点,则的长为( )A4B10C6D88、如图,小明从点A出发沿直线前进10m到达点B,向左转,后又沿直线前进10m到达点C,再向左转30后沿直线前进10m到达点照这样走下去,小明第一次回到出发点A,一共走了( )米A80B100C120D1409、一个多边形每个外角都等于36,则这个多边形是几边形( )A7B8C9D1010、如图,在ABC中,AC=BC=8,BCA=60,直线ADBC于点D,E是AD上的一个动点,连接EC,将线段EC绕点C按逆时针方向旋转60得到FC,连接DF,则在点E的运动过程中,DF的最

4、小值是( )A1B1.5C2D4第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在ABC中,D,E分别是边AB,AC的中点,B50现将ADE沿DE折叠点A落在三角形所在平面内的点为A1,则BDA1的度数为 _2、已知一个多边形内角和1800度,则这个多边形的边数_3、如图,P是面积为S的ABCD内任意一点,如果PAD的面积为S1,PBC的面积为S2,那么S1+S2=_(用含的代数式表示)4、一个多边形的内角和比四边形的内角和多,并且这个多边形的各内角都相等,则这个多边形的每个外角等于_5、如果一个正多边形每一个内角都等于135,那么这个正多边形的边数是 _三、解答

5、题(5小题,每小题10分,共计50分)1、如果一个多边形的内角和与外角和恰好相等,那么这个多边形有多少条对角线?2、如图,根据图上标注的信息,求出x的大小3、问题背景:课外学习小组在一次学习研讨中,得到了如下两个命题:如图(1),在正ABC中,M、N分别是AC、AB上的点,BM与CN相交于点O,若BON60,则BMCN;如图(2),在正方形ABCD中,M、N分别是CD、AD上的点,BM与CN相交于点O,若BON90,则BMCN然后运用类似的思想提出了如下命题:如图(3),在正五边形ABCDE中,M、N分别是CD、DE上的点,BM与CN相交于点O,若BON108,则BMCN任务要求:(1)请你从

6、三个命题中选择一个进行证明;(2)请你继续完成下面的探索;在正n(n3)边形ABCDEF中,M、N分别是CD、DE上的点,BM与CN相交于点O,试问当BON等于多少度时,结论BMCN成立(不要求证明);如图(4),在正五边形ABCDE中,M、N分别是DE、AE上的点,BM与CN相交于点O,BON108时,试问结论BMCN是否成立若成立,请给予证明;若不成立,请说明理由4、如图,在ABC中,点D,E分别是AC,AB的中点,点F是CB延长线上的一点,且CF3BF,连接DB,EF(1)求证:四边形DEFB是平行四边形;(2)若ACB90,AC12cm,DE4cm,求四边形DEFB的周长5、已知MNB

7、F,ABDE,ACDF(1)如图1,求证:ABCADE;(2)如图2,点G是DE上一点,连接AG,若ACBF,CAG+CEG180,点E到AD的距离与线段AG长度之比为5:4,AD20,求DE的长-参考答案-一、单选题1、D【分析】根据多边形外角公式,代入角度求出n即可【详解】外角故多边形边数为9故选D【点睛】本题考查多边形外角公式,掌握该公式是本题解题关键2、C【分析】三角形纸片中,剪去其中一个80的角后变成四边形,则根据多边形的内角和等于360度即可求得1+2的度数【详解】解:根据三角形的内角和定理得:四边形除去1,2后的两角的度数为180-80=100,则根据四边形的内角和定理得:1+2

8、=360-100=260故选:C【点睛】本题主要考查四边形的内角和,解题的关键是掌握四边形的内角和为360及三角形的内角和为1803、B【详解】解:如图作点O关于直线AB的对称点O,作且,连接OC交AB于点D,连接ON,MO, 四边形MNOC为平行四边形,在OMC中,即,当点M到点D的位置时,即当O、M、C三点共线,取得最小值,设,则,解得:,即:,解得:,在中,即:,故选:B【点睛】题目主要考查轴对称及平行线、平行四边形的性质,勾股定理解三角形,角的直角三角形性质,理解题意,作出相应图形是解题关键4、A【分析】根据三角形的中位线定理,可得 ,从而PE=PF,则有PEF=PFE,再根据三角形的

9、内角和定理,即可求解【详解】解:点P是对角线BD的中点,E、F分别是AB、CD的中点, ,ADBC,PE=PF,PEF=PFE,EPF130, 故选:A【点睛】本题主要考查了三角形的中位线定理,等腰三角形的性质,三角形的内角和定理,熟练掌握三角形的中位线定理是解题的关键5、C【分析】根据多边形内角与外角互补,先求出一个外角,正多边形的外角和等于360,又可表示成36n,列方程可求解:【详解】解: 设所求正多边形边数为n,正多边形的一个内角等于144,正多边形的一个外角=180-144=36,则36n=360,解得n=10故选:C【点睛】本题考查正多边形内角与外角关系,正多边形外角和问题,简单一

10、元一次方程,掌握正多边形内角与外角关系,正多边形外角和问题,简单一元一次方程,利用外角和列方程是解题关键6、C【分析】设这个正多边形的边数为n,正n边形有n个外角,外角和为360,那么边数n=360一个外角的度数【详解】解:这个正多边形的边数为n,正n边形每个外角都是36,n=36036=10故选C【点睛】本题考查的是正多边形的外角和,掌握正多边形的外角和是360度是解题的关键7、B【分析】根据三角形中位线定理得到PD=BF=6,PDBC,根据平行线的性质得到PDA=CBA,同理得到PDQ=90,根据勾股定理计算,得到答案【详解】解:C=90,CAB+CBA=90,点P,D分别是AF,AB的中

11、点,PD=BF=6,PD/BC,PDA=CBA,同理,QD=AE=8,QDB=CAB,PDA+QDB=90,即PDQ=90,PQ=10,故选:B【点睛】本题考查的是三角形中位线定理、勾股定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键8、C【分析】由小明第一次回到出发点A,则小明走过的路程刚好是一个多边形的周长,由多边形的外角和为,每次的转向的角度的大小刚好是多边形的一个外角,则先求解多边形的边数,从而可得答案.【详解】解:由 可得:小明第一次回到出发点A,一个要走米,故选C【点睛】本题考查的是多边形的外角和的应用,掌握“由多边形的外角和为得到一共要走12个10米”是解本题

12、的关键.9、D【分析】根据任何多边形的外角和都是360度,利用360除以外角的度数就可以求出外角和中外角的个数,即多边形的边数【详解】解:36036=10,这个多边形的边数是10故选D【点睛】本题考查了多边形内角与外角,外角和的大小与多边形的边数无关,熟练掌握多边形内角与外角是解题关键10、C【分析】取线段AC的中点G,连接EG,根据等边三角形的性质以及角的计算即可得出CD=CG以及FCD=ECG,由旋转的性质可得出EC=FC,由此即可利用全等三角形的判定定理SAS证出FCDECG,进而即可得出DF=GE,再根据点G为AC的中点,即可得出EG的最小值,此题得解【详解】解:取线段AC的中点G,连

13、接EG,如图所示AC=BC=8,BCA=60,ABC为等边三角形,且AD为ABC的对称轴,CD=CG=AB=4,ACD=60,ECF=60,FCD=ECG,在FCD和ECG中,FCDECG(SAS),DF=GE当EGBC时,EG最小,点G为AC的中点,此时EG=DF=CD=BC=2故选:C【点睛】本题考查了等边三角形的性质以及全等三角形的判定与性质,三角形中位线的性质,解题的关键是通过全等三角形的性质找出DF=GE,本题属于中档题,难度不大,解决该题型题目时,根据全等三角形的性质找出相等的边是关键二、填空题1、80【分析】由翻折的性质得ADEA1DE,由中位线的性质得DE/BC,由平行线的性质

14、得ADEB50,即可解决问题【详解】解:由题意得:ADEA1DE;D、E分别是边AB、AC的中点,DE/BC,ADEBA1DE50,A1DA100,BDA118010080故答案为:80【点睛】本题主要考查了翻折变换及其应用问题;同时还考查了三角形的中位线定理等几何知识点熟练掌握各性质是解题的关键2、12【分析】设这个多边形的边数为n,根据多边形的内角和定理得到,然后解方程即可【详解】解:设这个多边形的边数是n,依题意得,故答案为:12【点睛】考查了多边形的内角和定理,关键是根据n边形的内角和为解答3、【分析】根据题意,作出合适的辅助线,然后根据图形和平行四边形的面积、三角形的面积,即可得到S

15、和S1、S2之间的关系,本题得以解决【详解】解:过点P作EFAD交AD于点E,交BC于点F,四边形ABCD是平行四边形,AD=BC,S=BCEF,S1=,S2=,EF=PE+PF,AD=BC,S1+S2=,故答案为:【点睛】本题考查平行四边形的性质、三角形的面积,解答本题的关键是明确题意,利用数形结合的思想解答4、45【分析】首先由题意得出等量关系,即这个多边形的内角和比四边形的内角和多720,由此列出方程解出边数,进一步可求出它每一个内角的度数【详解】解:设这个多边形边数为n,则(n-2)180=360+720,解得:n=8,这个多边形的每个内角都相等,它每一个外角也相等,度数为3608=4

16、5故答案为:45【点睛】本题主要考查多边形的内角和外角解题的关键是根据题意列出方程从而解决问题5、【分析】根据题意一个正多边形每一个内角都等于,求得这个正多边形每一个外角都等于,再用外角和除以一个外角的度数求得正多边形的边数,最后根据多边形的内角和公式求解即可【详解】这个多边形的边数是,则内角和是,故答案为:【点睛】本题考查多边形的外角和、正多边形的外角与边数的关系灵活使用多边形的内角、外角解决问题是难点三、解答题1、2条【分析】先根据内角和公式与外角和等于360求出为四边形,再根据对角线的特点即可求解【详解】解:设这个多边形有n条边,那么解得n=4 所以这个多边形是四边形,它有2条对角线【点

17、睛】此题主要考查多边形的内角和、外角和及对角线,解题的关键是熟知n边形的内角和为2、【分析】如图,首先根据四边形的内角和求出的度数,然后根据平角等于180即可求出x的大小【详解】解:如图,四边形内角和,【点睛】此题考查了四边形的内角和,邻补角的概念,解题的关键是熟练掌握多边形内角和公式和邻补角的概念n边形的内角的和等于:(n大于等于3且n为整数)3、(1)选或或,证明见详解;(2)当时,结论成立;当时,还成立,证明见详解【分析】(1)命题,根据等边三角形的性质及各角之间的等量代换可得:,然后依据全等三角形的判定定理可得:,再由全等三角形的性质即可证明;命题,根据正方形的性质及各角之间的等量代换

18、可得:,然后依据全等三角形的判定定理可得:,再由全等三角形的性质即可证明;命题,根据正五边形的性质及各角之间的等量代换可得:,然后依据全等三角形的判定定理可得:,再由全等三角形的性质即可证明;(2)根据(1)中三个命题的结果,得出相应规律,即可得解;连接BD、CE,根据全等三角形的判定定理和性质可得:, ,利用各角之间的关系及等量代换可得:, ,继续利用全等三角形的判定定理和性质即可得出证明【详解】解:(1)如选命题,证明:如图所示: , , , ,在 与CAN中, , ; 如选命题,证明:如图所示: , , , ,在 与CDN中, , ;如选命题,证明:如图所示: , , , ,在 与CDN

19、中, , ;(2)根据(1)中规律可得:当时,结论成立;答:当时,成立证明:如图所示,连接BD、CE,在和中, , , , , , ,又 , ,在和中, , 【点睛】题目主要考查全等三角形的判定定理和性质,正多边形的内角,等腰三角形的性质,三角形内角和定理等,理解题意,结合相应图形证明是解题关键4、(1)见解析;(2)平行四边形DEFB的周长【分析】(1)证DE是ABC的中位线,得DEBC,BC2DE,再证DEBF,即可得出四边形DEFB是平行四边形;(2)由(1)得:BC2DE8(cm),BFDE4cm,四边形DEFB是平行四边形,得BDEF,再由勾股定理求出BD10(cm),即可求解【详解

20、】(1)证明:点D,E分别是AC,AB的中点,DE是ABC的中位线,DE/BC,BC2DE,CF3BF,BC2BF,DEBF,四边形DEFB是平行四边形;(2)解:由(1)得:BC2DE8(cm),BFDE4cm,四边形DEFB是平行四边形,BDEF,D是AC的中点,AC12cm,CDAC6(cm),ACB90,BD10(cm),平行四边形DEFB的周长2(DE+BD)2(4+10)28(cm)【点睛】本题考查了平行四边形的判定与性质、三角形中位线定理、勾股定理等知识;熟练掌握三角形中位线定理,证明四边形DEFB为平行四边形是解题的关键5、(1)见解析;(2)25【分析】(1)根据平行线的性质(两直线平行,内错角相等,同位角相等)得出两组角相等,然后等量代换即可得;(2)根据平行四边形的判定可得四边形ABED为平行四边形,由垂直及四边形内角和可得,点E到AD的距离为AC,根据平行四边形的等面积法即可得出,再由已知条件即可得出DE长度【详解】解:(1),;(2),四边形ABED为平行四边形,点E到AD的距离为AC,根据四边形内角和可得:,由平行四边形等面积法可得:,根据题意可得:,【点睛】题目主要考查平行线的性质及平行四边形的基本性质,利用平行四边形等面积法确定线段的比是解题关键

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁