2022年精品解析沪教版七年级数学第二学期第十五章平面直角坐标系专题训练试题(名师精选).docx

上传人:知****量 文档编号:28162352 上传时间:2022-07-26 格式:DOCX 页数:30 大小:930.99KB
返回 下载 相关 举报
2022年精品解析沪教版七年级数学第二学期第十五章平面直角坐标系专题训练试题(名师精选).docx_第1页
第1页 / 共30页
2022年精品解析沪教版七年级数学第二学期第十五章平面直角坐标系专题训练试题(名师精选).docx_第2页
第2页 / 共30页
点击查看更多>>
资源描述

《2022年精品解析沪教版七年级数学第二学期第十五章平面直角坐标系专题训练试题(名师精选).docx》由会员分享,可在线阅读,更多相关《2022年精品解析沪教版七年级数学第二学期第十五章平面直角坐标系专题训练试题(名师精选).docx(30页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、七年级数学第二学期第十五章平面直角坐标系专题训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在平面直角坐标系中,下列各点与点(2,3)关于x轴对称的是( )A(2,3)B(3,2)C(2,3)D(2,

2、3)2、点P(1,2)关于y轴对称点的坐标是()A(1,2)B(1,2)C(1,2)D(2,1)3、小明在介绍郑州外国语中学位置时,相对准确的表述为( )A陇海路以北B工人路以西C郑州市人民政府西南方向D陇海路和工人路交叉口西北角4、点(a,3)关于原点的对称点是(2,b),则ab( )A5B5C1D15、如图,A、B两点的坐标分别为A(2,2)、B(4,2),则点C的坐标为( )A(2,2)B(0,0)C(0,2)D(4,5)6、若在第一象限的ABC关于某条直线对称后的DEF在第四象限,则这条直线可以是()A直线x1Bx轴Cy轴D直线x7、在平面直角坐标系中,点A(0,3),B(2,1),经

3、过点A的直线lx轴,C是直线l上的一个动点,当线段BC的长度最短时,点C的坐标为()A(0,1)B(2,0)C(2,1)D(2,3)8、已知点在一、三象限的角平分线上,则的值为( )ABCD9、点在第四象限,则点在第几象限()A第一象限B第二象限C第三象限D第四象限10、在平面直角坐标系xOy中,点A(2,3)关于原点对称的点的坐标是( )A(2,3)B(2,3)C(3,2)D(2,3)第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知点P(,)在x轴上,则_2、在平面直角坐标系中,点(2,5)关于原点对称的点的坐标是_3、如图所示,在平面直角坐标系中,射线OA将由边

4、长为1的7个小正方形组成的图案的面积分成相等的两部分,则点A的坐标为_4、点(2,-3)关于原点的对称点的坐标为_5、如图,已知点A(2,0),B(0,4),C(2,4),若在所给的网格中存在一点D,使得CD与AB垂直且相等(1)直接写出点D的坐标_;(2)将直线AB绕某一点旋转一定角度,使其与线段CD重合,则这个旋转中心的坐标为_三、解答题(10小题,每小题5分,共计50分)1、如图,在平面直角坐标系中,ABC三个顶点的坐标分别为A(0,3),B(3,5),C(4,1)(1)把ABC向右平移3个单位得A1B1C1,请画出A1B1C1并写出点A1的坐标;(2)把ABC绕原点O旋转180得到A2

5、B2C2,请画出A2B2C22、如图,等腰直角ABC中,BCAC,ACB90,现将该三角形放置在平面直角坐标系中:(1)点B坐标为(0,2),点C坐标为(6,0),求点A的坐标;(2)点B坐标为(0,m),点C坐标为(n,0),连接OA,若P为坐标平面内异于点A的点,且以O、P、C为顶点的三角形与OAC全等,请直接写出满足条件的点P的坐标(用含m,n的式子表示)3、如图,已知ABC各顶点的坐标分别为A(-3,2),B(-4,-3),C(-1,-1) (1)请在图中画出ABC关于y轴对称的A1B1C1,(2)并写出A1B1C1的各点坐标4、如图,方格纸中的每个小方格都是边长为1个单位的正方形,在

6、建立平面直角坐标系后,ABC的顶点均在格点上,点C的坐标为(0, -1), (1)写出A、B两点的坐标;(2)画出ABC关于y轴对称的A1B1C1 ; (3)画出ABC绕点C旋转180后得到的A2B2C25、如图,三角形的项点坐标分别为,(1)画出三角形关于点的中心对称的,并写出点的坐标;(2)画出三角形绕点顺时针旋转90后的,并写出点的坐标6、在平面直角坐标系中,的顶点坐标是、(1)画出绕点B逆时针旋转的;(2)画出关于点O的中心对称图形;(3)可由绕点M旋转得,请写出点M的坐标:_7、马来西亚航空公司MH370航班自失联以来,我国派出大量救援力量,竭尽全力展开海上搜寻行动某天中国海巡01号

7、继续在南印度洋海域搜索,发现了一个位于东经101度,南纬25度的可疑物体如果约定“经度在前,纬度在后”,那么我们可以用有序数对(101,25)表示该可疑物体的位置,仿照此表示方法,东经116度,南纬38度如何用有序数对表示?8、如图,在所给网格图(每小格边长均为1的正方形)中完成下列各题:(1)ABC的面积为 ;(2)画出格点ABC(顶点均在格点上)关于x轴对称的A1B1C1;(3)在y轴上画出点Q,使QAQC最小(保留画的痕迹)9、如图,在平面直角坐标系中,点B的坐标是,点C的坐标为,CB交x轴负半轴于点A,过点B作射线,作射线CD交BM于点D,且(1)求证:点A为线段BC的中点(2)求点D

8、的坐标10、如图,在正方形网格中,每个小正方形的边长均为1,ABC的三个顶点都在格点上,结合所给的平面直角坐标系,解答下列问题:(1)请画出ABC关于x轴成轴对称的A1B1C1,并写出点A1的坐标;(2)请画出ABC关于点O成中心对称的A2B2C2,并写出点A2的坐标;(3)A1B1C1与A2B2C2关于某直线成轴对称吗?若是,请写出对称轴;若不是,请说明理由-参考答案-一、单选题1、A【分析】关于轴对称的两个点的坐标特点:横坐标不变,纵坐标互为相反数,据此直接作答即可.【详解】解:点(2,3)关于x轴对称的是 故选A【点睛】本题考查的是关于轴对称的两个点的坐标特点,掌握“关于轴对称的两个点的

9、坐标特点:横坐标不变,纵坐标互为相反数”是解本题的关键.2、A【分析】平面直角坐标系中任意一点P(x,y),关于y轴的对称点的坐标是(-x,y),即关于纵轴的对称点,纵坐标不变,横坐标变成相反数;这样就可以求出A的对称点的坐标,从而可以确定所在象限【详解】解:点P(-1,2)关于y轴对称,点P(-1,2)关于y轴对称的点的坐标是(1,2)故选:A【点睛】本题主要考查了平面直角坐标系中关于坐标轴成轴对称的两点的坐标之间的关系是需要识记的内容3、D【分析】根据位置的确定需要两个条件:方向和距离进行求解即可【详解】解:A、陇海路以北只有方向,不能确定位置,故不符合题意;B、工人路以西只有方向,不能确

10、定位置,故不符合题意;C、郑州市人民政府西南方向只有方向,不能确定位置,故不符合题意;D、陇海路和工人路交叉口西北角,是两个方向的交汇处,可以确定位置,符合题意;故选D【点睛】本题主要考查了确定位置,熟知确定位置的条件是解题的关键4、B【分析】根据关于原点对称的点的坐标特证构造方程-b3,a2,再解方程即可得到a、b的值,进而可算出答案【详解】解:点(a,3)关于原点的对称点是(2,b),b3,a2,解得:b-3,a2,则,故选择B【点睛】本题主要考查了关于原点对称的点的坐标:掌握关于原点对称的特征,两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点O的对称点是P(x,y)关键

11、是利用对称性质构造方程5、B【分析】根据A、B两点的坐标建立平面直角坐标系即可得到C点坐标【详解】解:A点坐标为(-2,-2),B点坐标为(4,-2),可以建立如下图所示平面直角坐标系,点C的坐标为(0,0),故选B【点睛】本题主要考查了写出坐标系中点的坐标,解题的关键在于能够根据题意建立正确的平面直角坐标系6、B【分析】根据轴对称的性质判断即可【详解】解:若在第一象限的ABC关于某条直线对称后的DEF在第四象限,则这条直线可以是x轴故选:B【点睛】本题考察了轴对称的性质,利用轴对称的性质找出对称轴是本题的关键7、D【分析】根据垂线段最短可知BCl,即BCx轴,由已知即可求解【详解】解:点A(

12、0,3),经过点A的直线lx轴,C是直线l上的一个动点,点C的纵坐标是3,根据垂线段最短可知,当BCl时,线段BC的长度最短,此时, BCx轴,B(2,1),点C的横坐标是2,点C坐标为(2,3),故选:D【点睛】本题考查坐标与图形、垂线段最短,熟知图形与坐标的关系,掌握垂线段最短是解答的关键8、A【分析】根据平面直角坐标系一三象限角平分线上点的特征是横纵坐标相等列式计算即可;【详解】点在一、三象限的角平分线上,;故选A【点睛】本题主要考查了一三象限角平分线上点的特征,准确分析计算是解题的关键9、C【分析】根据点A(x,y)在第四象限,判断x,y的范围,即可求出B点所在象限【详解】点A(x,y

13、)在第四象限,x0,y0,x0,y20,故点B(x,y2)在第三象限故选:C【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-)10、D【分析】根据“关于原点对称的两个点,横坐标、纵坐标分别互为相反数”即可求得【详解】解:点A(2,3)关于原点对称的点的坐标是故选D【点睛】本题考查了关于原点对称的点的坐标特征,掌握“关于原点对称的两个点,横坐标、纵坐标分别互为相反数”是解题的关键二、填空题1、【分析】根据x轴上点的纵坐标为0求解即可【详解】解:点P在x轴上,

14、a-3=0,即a=3,故答案为:3【点睛】本题主要考查了点的坐标,解题的关键是掌握平面直角坐标系内各象限、坐标轴上点的坐标符号特点2、(2,-5)【分析】根据平面直角坐标系中任意一点P(x,y),关于原点的对称点是(-x,-y)【详解】解:根据中心对称的性质,得点P(-2,5)关于原点对称点的点的坐标是(2,-5)故答案为:(2,-5)【点睛】本题主要考查了关于原点对称的点坐标的关系,是需要识记的基本问题记忆方法是结合平面直角坐标系的图形记忆,比较简单3、(,3),3)【分析】过A点作ABy轴于B点,作ACx轴于C点,由于射线OA将由边长为1的7个小正方形组成的图案的面面积分成相等的两部分,所

15、以两边的面积分别为3.5,AOB面积为5.5,即OBAB5.5,可解AB,则A点坐标可求【详解】解:过A点作ABy轴于B点,作ACx轴于C点,则ACOB,ABOC正方形的边长为1,OB3射线OA将由边长为1的7个小正方形组成的图案的面面积分成相等的两部分,两边的面积分别为3.5AOB面积为3.5+25.5,即OBAB5.5,3AB5.5,解得AB所以点A坐标为(,3)故答案为:(,3)【点睛】本题主要考查了点的坐标、三角形面积,解题的关键是过某点作x轴、y轴的垂线,垂线段长度再转化为点的坐标4、 (-2,3)【分析】根据“关于原点对称的点的坐标关系,横坐标与纵坐标都互为相反数”,即可求解【详解

16、】点(2,-3)关于原点的对称点的坐标是(-2,3) 故答案为:(-2,3)【点睛】本题主要考查点关于原点对称,解决本题的关键是要熟练掌握关于原点对称点的坐标的关系5、 或【分析】(1)观察坐标系即可得点D坐标;(2)对应点连线段的垂直平分线的交点即为旋转中心【详解】解:(1)观察图象可知,点D的坐标为(6,6),故答案为:(6,6);(2)当点A与C对应,点B与D对应时,如图:此时旋转中心P的坐标为(4,2);当点A与D对应,点B与C对应时,如图:此时旋转中心P的坐标为(1,5);故答案为:(4,2)或(1,5)【点睛】本题考查坐标与图形变化旋转,解题的关键是理解对应点连线段的垂直平分线的交

17、点即为旋转中心三、解答题1、(1)图见解析;A1(3,3);(2)见解析【分析】(1)直接利用平移的性质得出对应点位置进而得出答案;(2)直接利用旋转的性质得出对应点位置进而得出答案【详解】解:(1)如图所示:A1B1C1,即为所求,点A1的坐标为:(3,3);(2)如图所示:A2B2C2,即为所求【点睛】此题主要考查了旋转变换以及平移变换,正确得出对应点位置是解题关键2、(1)点A的坐标;(2)P的坐标为:或或【分析】(1)根据已知条件得到,得到,证明得到,再根据已知点的坐标计算即可;(2)根据题意:考虑作的对称图形,然后根据全等三角形的性质求解即可得【详解】解:(1)过点A作轴,在中:,轴

18、,在与中,又点B坐标为,点C坐标为,点A的坐标;(2)作关于x轴的对称图形得到,点B坐标为,点C坐标为,点A的坐标;点O,C关于直线对称,作关于直线的对称图形得到,过点作轴,在与中,结合点所在的位置可得:;作关于x轴的对称图形得到,即,与横坐标相同,纵坐标互为相反数,可得:;综上所述:P的坐标为:或或【点睛】本题主要考查了坐标与图形的应用,等腰三角形的判定与性质,全等三角形的判定与性质,根据题意作出相应图形进行分类讨论是解题关键3、(1)见解析;(2)A1(3,2),B1(4,-3),C1(1,-1)【分析】(1)分别作出三个顶点关于y轴的对称点,再首尾顺次连接即可;(2)根据所作图形可得答案

19、【详解】解:(1)如图所示,A1B1C1即为所求作(2)由图可知,A1(3,2),B1(4,-3),C1(1,-1)【点睛】本题主要考查作图-轴对称变换,解题的关键是掌握轴对称变换的定义和性质,并据此得出变换后的对应点注意:关于x轴对称的点,横坐标相同,纵坐标互为相反数4、(1)A(-1,2) B(-3,1); (2)见解析;(3)见解析【分析】(1)根据 A,B 的位置写出坐标即可;(2)分别求出 A,B,C 的对应点 A1,B1,C1的坐标,然后描点A1(1,2),B1(3,1),C1(0,-1),顺次连结A1B1, B1C1,C1A1即可;(3)分别求出 A,B,C 的对应点A2(1,-

20、4)、B2(3,-3)、C2(0,-1),然后描点,顺次连结A2B2, B2C2,C2A2即可【详解】(1)由题意 A(-1,2),B(-3,1)(2)ABC关于y轴对称的A1B1C1,对应点的坐标纵坐标不变,横坐标互为相反数,A(-1,2),B(-3,1)C(0,-1),A1(1,2),B1(3,1),C1(0,-1),在平面直角坐标系中描点A1(1,2),B1(3,1),C1(0,-1),顺次连结A1B1, B1C1,C1A1,如图A1B1C1即为所求(3)ABC绕点C旋转180后得到的A2B2C2,关于点C成中心对称,对应点的横坐标为互为相反数,A(-1,2),B(-3,1)C(0,-1

21、),A2、B2、C2的横坐标分别为1,3,0,纵坐标分别为-1-(2+1)=-4,-1-(1+1)=-3,-1,A2(1,-4)、B2(3,-3)、C2(0,-1),在平面直角坐标系中描点A2(1,-4)、B2(3,-3)、C2(0,-1),顺次连结A2B2, B2C2,C2A2,如图A2B2C2即为所求【点睛】本题主要考查图形与坐标,作图-轴对称变换,旋转变换等知识,解答本题的关键是熟练掌握基本知识,属于中考常考题型5、(1)图见解析,;(2)图见解析,【分析】(1)写出,关于原点对称的点,连接即可;(2)连接OC,OB,根据旋转的90可得,即可;【详解】(1),关于原点对称的点,作图如下;

22、(2)连接OC,OB,根据旋转的90可得,其中点C2的坐标是(3,-1),作图如下:【点睛】本题主要考查了平面直角坐标系中图形的旋转,作关于原点对称的图形,准确分析作图是解题的关键6、(1)画图见解析;(2)画图见解析;(3)【分析】(1)分别确定绕逆时针旋转后的对应点再顺次连接从而可得答案;(2)分别确定关于原点对称的对称点再顺次连接从而可得答案;(3)如图,由;是旋转对应点,则到旋转中心的距离相等,到旋转中心的距离相等,可得线段的垂直平分线的交点即为旋转中心,再根据在坐标系内的位置写出其坐标即可.【详解】解:(1)如图,是所求作的三角形,(2)如图,是所求作的三角形;(3)如图,;是旋转对

23、应点, 到旋转中心的距离相等,到旋转中心的距离相等,则线段的垂直平分线的交点即为旋转中心,其坐标为:【点睛】本题考查的是旋转作图,中心对称的作图,确定旋转中心,掌握旋转的性质是解本题的关键.7、东经度,南纬度可以表示为【分析】根据“经度在前,纬度在后”的顺序,可以将东经度,南纬度用有序数对表示【详解】解:由题意可知东经度,南纬度,可用有序数对表示故东经度,南纬度表示为【点睛】本题考察了用有序数对表示位置解题的关键在于读懂题意中给定的规则8、(1)5;(2)见解析;(3)见解析【分析】(1)利用“补全矩形法”求解ABC的面积;(2)找到A、B、C三点关于x轴的对称点,顺次连接可得A1B1C1;(

24、3)作点A关于y轴的对称点A,连接AC,则AC与y轴的交点即是点Q的位置【详解】解:(1)如图所示:SABC342223415(2)如图所示:(3)如图所示:【点睛】本题考查了轴对称作图及最短路径的知识,难度一般,解答本题注意“补全矩形法”求解格点三角形面积的应用9、(1)证明见解析,(2)(8,2)【分析】(1)过点C作CQOA于Q,证CQABOA,即可证明点A为线段BC的中点;(2)过点C作CROB于R,过点D作DSOB于S,证CRBBSD,根据全等三角形对应边相等即可求点D的坐标【详解】(1)证明:过点C作CQOA于Q,点B的坐标是,点C的坐标为,CQ=OB=4,CQOBOA90,CAQ

25、BAO,CQABOA,CA=AB,点A为线段BC的中点(2)过点C作CROB于R,过点D作DSOB于S,CRBDSBCBD90,CBR+SBD90,SDB+SBD90,CBRSDB,BCDBDC45,CB=DB,CRBBSD,CR=SB,RB=DS,点B的坐标是,点C的坐标为,CR=SB6,RB=DS8,OS=SBOB2,点D的坐标为(8,2)【点睛】本题考查了全等三角形的判定与性质和点的坐标,解题关键是树立数形结合思想,恰当作辅助线,构建全等三角形10、(1)画图见解析,点A1的坐标;(-4,3);(2)画图见解析,点A2的坐标(4,3);(3)A1B1C1与A2B2C2关于y轴成轴对称,对

26、称轴为y轴【分析】(1)分别作出A,B,C的对应点A1,B1,C1即可;(2)分别作出A,B,C的对应点A2,B2,C2即可;(3)根据轴对称的定义判断即可【详解】解:(1)如图,A1B1C1即为所求,点A的对应点A1的坐标;(-4,3);(2)如图,A2B2C2即为所求,点A2的坐标(4,3);(3)A1B1C1与A2B2C2关于y轴成轴对称,对称轴为y轴【点睛】本题考查作图-旋转变换,轴对称变换,中心对称等知识,解题的关键是理解题意,灵活运用所学知识解决问题注意:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁