2022年必考点解析沪教版七年级数学第二学期第十五章平面直角坐标系章节训练试题(名师精选).docx

上传人:可**** 文档编号:57396311 上传时间:2022-11-04 格式:DOCX 页数:28 大小:638.74KB
返回 下载 相关 举报
2022年必考点解析沪教版七年级数学第二学期第十五章平面直角坐标系章节训练试题(名师精选).docx_第1页
第1页 / 共28页
2022年必考点解析沪教版七年级数学第二学期第十五章平面直角坐标系章节训练试题(名师精选).docx_第2页
第2页 / 共28页
点击查看更多>>
资源描述

《2022年必考点解析沪教版七年级数学第二学期第十五章平面直角坐标系章节训练试题(名师精选).docx》由会员分享,可在线阅读,更多相关《2022年必考点解析沪教版七年级数学第二学期第十五章平面直角坐标系章节训练试题(名师精选).docx(28页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、七年级数学第二学期第十五章平面直角坐标系章节训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在平面直角坐标系中,点关于轴的对称点的坐标是( )ABCD2、在平面直角坐标系中,点A的坐标为作点A关于x轴

2、的对称点,得到点,再将点向左平移2个单位长度,得到点,则点所在的象限是( )A第一象限B第二象限C第三象限D第四象限3、如图,是由ABO平移得到的,点A的坐标为(-1,2),它的对应点的坐标为(3,4),ABO内任意点P(a,b)平移后的对应点的坐标为( )A(a,b)B(-a,-b)C(a+2,b+4)D(a+4,b+2)4、若点在第一象限,则a的取值范围是( )ABCD无解5、点在( )A第一象限B第二象限C第三象限D第四象限6、在平面直角坐标系中,点(2,5)关于x轴对称的点的坐标是()A(2,5)B(2,5)C(2,5)D(2,5)7、如图,在坐标系中用手盖住一点,若点到轴的距离为2,

3、到轴的距离为6,则点的坐标是( )ABCD8、已知点A(x,5)在第二象限,则点B(x,5)在( )A第一象限B第二象限C第三象限D第四象限9、在平面直角坐标系中,已知点A(-4,3)与点B关于y轴对称,则点B的坐标为( )A(-4,-3)B(4,3)C(4,-3)D(-4,3)10、在平面直角坐标系中,点A(0,3),B(2,1),经过点A的直线lx轴,C是直线l上的一个动点,当线段BC的长度最短时,点C的坐标为()A(0,1)B(2,0)C(2,1)D(2,3)第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、点A(3,4)到x轴的距离是 _2、点关于x轴对称的点的坐

4、标为_3、在平面直角坐标系中,点与点B关于y轴对称,则点B的坐标是_4、已知点在第二象限,且离轴的距离为3,则_5、如图所示,公园的位置是_,车站的位置是_,学校的位置是_三、解答题(10小题,每小题5分,共计50分)1、在平面直角坐标系xOy中,对于任意图形G及直线l1,l2,给出如下定义:将图形G先沿直线l1翻折得到图形G1,再将图形G1沿直线l2翻折得到图形G2,则称图形G2是图形G的伴随图形例如:点P(2,1)的伴随图形是点P(-2,-1).(1)点Q(-3,-2)的伴随图形点Q的坐标为 ;(2)已知A(t,1),B(t-3,1),C(t,3),直线m经过点(1,1).当t=-1,且直

5、线m与y轴平行时,点A的伴随图形点A的坐标为 ;当直线m经过原点时,若ABC的伴随图形上只存在两个与x轴的距离为1的点,直接写出t的取值范围2、如图,在平面直角坐标系中,ABC的三个项点坐标分别为A(1,1)、B(3,4)、C(4,2)(1)在图中画出ABC关于y轴对称的A1B1C1;(2)通过平移,使B1移动到原点O的位置,画出平移后的A2B2C2(3)在ABC中有一点P(a,b),则经过以上两次变换后点P的对应点P2的坐标为_3、在如图所示的正方形网格中,每个小正方形的边长都是1,ABC的顶点都在正方形网格的格点(网格线的交点)上(1)请在如图所示的网格平面内作出平面直角坐标系,使点A坐标

6、为(1 ,3),点B坐标为(2 ,1);(2)请画出ABC关于y轴对称的图形A1B1C1,并写出点B1的坐标为 ;(3)P为y轴上一点,当PB+PC的值最小时,P点的坐标为 4、如图所示,在平面直角坐标系中,的顶点坐标分别是,和(1)已知点关于轴的对称点的坐标为,求,的值;(2)画出,且的面积为 ;(3)画出与关于轴成对称的图形,并写出各个顶点的坐标5、如图是某地火车站及周围的简单平面图(图中每个小正方形的边长代表1千米)(1)请以火车站所在的位置为坐标原点,以图中小正方形的边长为单位长度,建立平面直角坐标系,并写出体育场A、超市B、市场C、文化宫D的坐标;(2)在(1)中所建的坐标平面内,若

7、学校E的位置是(3,3),请在图中标出学校E的位置6、如图,在平面直角坐标系中,的三个顶点均在格点上(1)在网格中作出关于轴对称的图形;(2)直接写出以下各点的坐标:_,_,_;(3)网格的单位长度为1.则_7、(1)如图所示,图中的两个三角形关于某点对称,请找出它们的对称中心O(2)如图所示,已知ABC的三个顶点的坐标分别为A(4,1),B(1,1),C(3,2)将ABC绕原点O旋转180得到A1B1C1,请画出A1B1C1,并写出点A1的坐标8、如图,的顶点坐标分别为画出绕点顺时针旋转,得到并直接写出的面积9、在平面直角坐标系中,的顶点,的坐标分别为,与关于轴对称,点,的对应点分别为,请在

8、图中作出,并写出点,的坐标10、如图,在正方形网格中,每个小正方形的边长均为1,ABC的三个顶点都在格点上,结合所给的平面直角坐标系,解答下列问题:(1)请画出ABC关于x轴成轴对称的A1B1C1,并写出点A1的坐标;(2)请画出ABC关于点O成中心对称的A2B2C2,并写出点A2的坐标;(3)A1B1C1与A2B2C2关于某直线成轴对称吗?若是,请写出对称轴;若不是,请说明理由-参考答案-一、单选题1、B【分析】根据关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数可得答案【详解】解:点P(2,-1)关于x轴的对称点的坐标为(2,1),故选:B【点睛】此题主要考查了关于x轴的对称点的坐

9、标,关键是掌握点的坐标的变化规律2、C【分析】根据题意结合轴对称的性质可求出点的坐标再根据平移的性质可求出点的坐标,即可知其所在象限【详解】点A的坐标为(1,3),点是点A关于x轴的对称点,点的坐标为(1,-3)点是将点向左平移2个单位长度得到的点,点的坐标为(-1,-3),点所在的象限是第三象限故选C【点睛】本题考查轴对称的性质,平移中点的坐标的变化以及判断点所在的象限根据题意求出点的坐标是解答本题的关键3、D【分析】根据点A的坐标和点的坐标确定平移规律,即可求出点P(a,b)平移后的对应点的坐标【详解】解:ABO是由ABO平移得到的,点A的坐标为(-1,2),它的对应点A的坐标为(3,4)

10、,ABO平移的规律是:先向右移4个单位长度,再向上平移2个单位长度,ABO内任意点P(a,b)平移后的对应点P的坐标为(a+4,b+2)故选:D【点睛】此题考查了平面直角坐标系中点的平移规律,解题的关键是熟练掌握平面直角坐标系中点的平移规律点向左平移,点的横坐标减小,纵坐标不变;向右平移,点的横坐标增大,纵坐标不变;点向上平移,点的横坐标不变,纵坐标增大;向下平移,点的横坐标不变,纵坐标减小4、B【分析】由第一象限内的点的横纵坐标都为正数,可列不等式组,再解不等式组即可得到答案.【详解】解: 点在第一象限, 由得: 由得: 故选B【点睛】本题考查的是根据点所在的象限求解字母的取值范围,掌握坐标

11、系内点的坐标特点是解本题的关键.5、C【分析】根据各象限内点的坐标特征解答【详解】解:点的横坐标小于0,纵坐标小于0,点所在的象限是第三象限故选:C【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(,);第二象限(,);第三象限(,);第四象限(,)6、A【分析】根据平面直角坐标系中任意一点P(x,y),关于x轴的对称点的坐标是(x,y),据此即可求得点A(2,5)关于x轴对称的点的坐标【详解】解:点(2,5)关于x轴对称,对称的点的坐标是(2,5)故选:A【点睛】本题主要考查了关于x轴对称点的性质,点P(x,y)关于x轴

12、的对称点P的坐标是(x,-y)7、C【分析】首先根据P点在第四象限,可以确定P点横纵坐标的符号,再由P到坐标轴的距离即可确定P点坐标【详解】解:P点在第四象限,P点横坐标大于0,纵坐标小于0,P点到x轴的距离为2,到y轴的距离为6,P点的坐标为(6,-2),故选C【点睛】本题主要考查了点所在的象限的坐标特征,点到坐标轴的距离,解题的关键在于能够熟练掌握第四象限点的坐标特征8、D【分析】由题意直接根据各象限内点坐标特征进行分析即可得出答案【详解】点A(x,5)在第二象限,x0,x0,点B(x,5)在四象限故选:D【点睛】本题考查各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解题的关键,

13、四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-)9、B【分析】利用y轴对称的点的坐标特征:横坐标互为相反数,纵坐标相等,即可求出点B的坐标【详解】解: A(-4,3) ,关于y轴对称点B的坐标为(4,3)故答案为:B【点睛】本题主要是考查了y轴对称的点的坐标特征,熟练掌握关于不同坐标轴对称的点的坐标特征,是解决此类问题的关键10、D【分析】根据垂线段最短可知BCl,即BCx轴,由已知即可求解【详解】解:点A(0,3),经过点A的直线lx轴,C是直线l上的一个动点,点C的纵坐标是3,根据垂线段最短可知,当BCl时,线段BC的长度最短,此时,

14、 BCx轴,B(2,1),点C的横坐标是2,点C坐标为(2,3),故选:D【点睛】本题考查坐标与图形、垂线段最短,熟知图形与坐标的关系,掌握垂线段最短是解答的关键二、填空题1、4【分析】根据点到x轴的距离等于纵坐标的绝对值解答即可【详解】解:点A(3,4)到x轴的距离为4,故答案为:4【点睛】本题考查了点到坐标轴的距离,掌握点到x轴的距离等于纵坐标的绝对值是解题的关键2、 (-2,-5)【分析】关于轴对称,横坐标不变,纵坐标互为相反数,进而可求解【详解】解:由点关于轴对称点的坐标为:,故答案为:【点睛】本题主要考查平面直角坐标系中点的坐标关于坐标轴对称问题,熟练掌握点的坐标关于坐标轴对称的方法

15、是解题的关键3、(2,4)【分析】根据点(x,y)关于y轴对称的点的坐标为(x, y)进行解答即可【详解】解:点A(2,4)关于y轴对称的点B的坐标是(2,4),故答案为:(2,4)【点睛】本题考查关于y轴对称的点的坐标,熟知关于y轴对称的点的坐标变换规律是解答的关键4、8【分析】根据题意可得,求出的值,代入计算即可【详解】解:点在第二象限,且离轴的距离为3,解得,故答案为:8【点睛】本题考查了平面直角坐标系点到坐标轴的距离,绝对值的意义,跟具体题意求出的值是解本题的关键5、 (4,4); (-2,-3); (4,-2) 【分析】用点坐标表示位置【详解】在直角坐标系中查横坐标为,纵坐标为;得到

16、公园的位置为故答案为:在直角坐标系中查横坐标为,纵坐标为;得到车站的位置为故答案为:在直角坐标系中查横坐标为,纵坐标为;得到学校的位置为故答案为:【点睛】本题考察了坐标系中点的坐标解题的关键在于正确的找出横、纵坐标的值三、解答题1、(1)(3,2)(2)(3,-1);-1t1或2t4【分析】(1)点先关于轴对称的点坐标为,再关于轴对称的点坐标为,故可得点的伴随图形点坐标;(2)时,点坐标为,直线为,此时点先关于轴对称的点坐标为,再关于轴对称的点坐标为,进而得到点的伴随图形点坐标;由题意知直线为直线,、三点的轴,的伴随图形点坐标依次表示为:,由题意可得,或解出的取值范围即可(1)解:由题意知沿轴

17、翻折得点坐标为;沿轴翻折得点坐标为故答案为:(2)解:,点坐标为,直线为,沿轴翻折得点坐标为沿直线翻折得点坐标为即为故答案为:解:直线经过原点直线为、的伴随图形点坐标先沿轴翻折,点坐标依次为,;然后沿直线翻折,点坐标依次表示为:,由题意可知:或解得:或【点睛】本题考查了直角坐标系中的点对称,几何图形翻折解题的关键在于正确的将翻折后的点坐标表示出来2、(1)见解析;(2)见解析;(3)【分析】(1)关于y轴对称可知,对应点纵坐标不变,横坐标互为相反数,由此可作出;(2)由移动到原点O的位置可知,对应点向右平移了3个单位,向下平移了4个单位,由此可作出;(3)根据两次变换可知,点P先关于y轴对称,

18、再进行平移,即先纵坐标不变,横坐标互为相反数,再向右平移了3个单位,最后向下平移了4个单位,即可得到的坐标【详解】(1)如图所示,即为所作;(2)如图所示,即为所作;(3)点关于y轴对称得,向右平移3个单位,再向下平移4个单位得故答案为:【点睛】本题考查平移与轴对称变换,掌握平移和轴对称的性质是解题的关键3、(1)见详解;(2)A1B1C1即为所求,见详解,(-2,1);(3)(0,3)【分析】(1)根据点A及点B的坐标,易得y轴在A的左边一个单位,x轴在A的下方3个单位,建立直角坐标系即可;(2)根据平面直角坐标系求出点C坐标,根据ABC关于y轴对称的图形为A1B1C1,求出A1(-1,3)

19、,B1(-2,1),C1(-4,7),描点A1(-1,3),B1(-2,1),C1(-4,7),再顺次连接即可画出ABC关于y轴对称的图形为A1B1C1;(3)过C1作y轴平行线与过B作x轴平行线交于G,BG交y轴于H,直接利用轴对称求最短路线的方法,根据点C的对称点为C1,连接BC1与y轴相交,此交点即为点P即可得出PB+PC的值最小,先证GBC1为等腰直角三角形,再证PHB为等腰直角三角形,最后求出y轴交点坐标即可【详解】解:(1)点A坐标为(1 ,3),点B坐标为(2 ,1)点A向左平移1个单位为y轴,再向下平移3个单位为x轴,建立如图平面直角坐标系,如图所示:即为作出的平面直角坐标系;

20、(2)根据图形得出出点C(4,7)ABC关于y轴对称的图形A1B1C1,关于y轴对称的点的特征是横坐标互为相反数,纵坐标不变,A(1,3),B (2,1),C(4,7),A1(-1,3),B1(-2,1),C1(-4,7),在平面直角坐标系中描点A1(-1,3),B1(-2,1),C1(-4,7),顺次连接A1B1, B1C1, C1 A1,如图所示:A1B1C1即为所求,故答案为:(-2,1);(3)如图所示:点P即为所求作的点过C1作y轴平行线与过B作x轴平行线交于G,BG交y轴于H,点C的对称点为C1,连接BC1与y轴相交于一点即为点P,此时PB+PC的值最小,B(2,1),C1(-4,

21、7),C1G=7-1=6,BG=2-(-4)=6,C1G=BG,GBC1为等腰直角三角形,GBC1=45,OHB=90,PHB为等腰直角三角形,yP-1=2-0,解得yP=3,点P(0,3)故答案为(0,3)【点睛】本题考查了建立平面直角坐标系,画轴对称图形,等腰直角三角形判定与性质,最短路径,掌握轴对称的性质及轴对称与坐标的变化规律并利用其准确作图,待定系数法求解析式是解答本题的关键4、(1),;(2)作图见详解;13;(3)作图见详解;,【分析】(1)利用关于x轴的对称点的坐标特点(横坐标不变,纵坐标互为相反数)直接写出答案即可;(2)先确定A、B、C点的位置,然后顺次连接,最后运用割补法

22、计算三角形面积即可;(3)先确定A、B、C三点关于y轴对称的对称点位置,然后顺次连接即可;最后直接写出三个点的坐标即可【详解】解:(1)点关于x轴的对称点P的坐标为,;(2)如图:即为所求,SABC=84-1218-1232-1264=13,故答案为:13;(3)如图:A、B、C点关于y轴的对称点为:,顺次连接,即为所求,【点睛】此题主要考查了轴对称变换的作图题,确定组成图形关键点的对称点是解答本题的关键5、(1)见解析,体育场A的坐标为(4,3)、超市B的坐标为(0,4)、市场C的坐标为(4,3)、文化宫D的坐标为(2,3);(2)见解析【分析】(1)以火车站所在的位置为坐标原点,建立平面直

23、角坐标系,即可表示出体育场A、超市B市场C、文化宫D的坐标(2)根据点的坐标的意义描出点E【详解】解:(1)平面直角坐标系如图所示,体育场A的坐标为(4,3)、超市B的坐标为(0,4)、市场C的坐标为(4,3)、文化宫D的坐标为(2,3)(2)如图,点E即为所求【点睛】本题考查了坐标确定位置,主要是对平面直角坐标系的定义和点的坐标的写法的考查,是基础题6、(1)见解析;(2); ;(3)5【分析】(1)利用轴对称的性质分别作出A,B,C的对应点A1,B1,C1即可;(2)根据点的位置写出坐标即可;(3)把三角形的面积看成矩形面积减去周围三个三角形面积即可【详解】解:(1)如图,A1B1C1即为

24、所求;(2)A1(3,4),B1(5,2),C1(2,0)故答案为:(3,4),(5,2),(2,0);(3)网格的单位长度为1,则=34-23-22-14=5,故答案为:5【点睛】本题考查轴对称,三角形的面积等知识,解题的关键是掌握轴对称的性质,学会利用分割法求三角形面积7、(1)见解析;(2)画图见解析,点A1的坐标为(-4,1)【分析】(1)根据对称中心的性质可得对应点连线的交点即为对称中心;(2)根据题意作出A,B,C绕原点O旋转180得到的点A1,B1,C1,然后顺次连接A1,B1,C1即可,根据点A1的在平面直角坐标系中的位置即可求得坐标【详解】(1)如图所示,点O即为要求作的对称

25、中心(2)如图所示,A1B1C1即为要求作的三角形,由点A1的在平面直角坐标系中的位置可得,点A1的坐标为(-4,1)【点睛】此题考查了平面直角坐标系中的几何旋转作图,中心对称的性质,解题的关键是熟练掌握中心对称的性质8、图见解析,面积为2【分析】先求出旋转后A1(5,2),B1(2,3),C1(4,1),然后描点,连线,利用矩形面积减三个三角形面积即可【详解】解:的顶点坐标分别为,绕点顺时针旋转,得到,点A1横坐标-1+5-(-1)=5,纵坐标-1+-1-(-4)=2,A1(5,2),点B1横坐标-1+2-(-1)=2,纵坐标-1+-1-(-5)=3,B1(2,3),点C1横坐标-1+4-(

26、-1)=4,纵坐标-1+-1-(-3)=1,C1(4,1),在平面直角坐标系中描点A1(5,2),B1(2,3),C1(4,1),顺次连结A1B1, B1C1,C1A1,则A1B1C1为所求;,=,=,=2【点睛】本题考查三角形旋转画图,割补法求三角形面积,掌握求旋转坐标的方法,描点法画图,割补法求面积是解题关键9、作图见解析,点,点,点【分析】分别作出A,B,C的对应点,即可【详解】解: 如图所示点,点,点【点睛】本题考查了作图-轴对称变换,直角坐标系中表示点的坐标,熟知关于y轴对称的点的坐标特点是解答此题的关键10、(1)画图见解析,点A1的坐标;(-4,3);(2)画图见解析,点A2的坐

27、标(4,3);(3)A1B1C1与A2B2C2关于y轴成轴对称,对称轴为y轴【分析】(1)分别作出A,B,C的对应点A1,B1,C1即可;(2)分别作出A,B,C的对应点A2,B2,C2即可;(3)根据轴对称的定义判断即可【详解】解:(1)如图,A1B1C1即为所求,点A的对应点A1的坐标;(-4,3);(2)如图,A2B2C2即为所求,点A2的坐标(4,3);(3)A1B1C1与A2B2C2关于y轴成轴对称,对称轴为y轴【点睛】本题考查作图-旋转变换,轴对称变换,中心对称等知识,解题的关键是理解题意,灵活运用所学知识解决问题注意:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁