《2022年精品解析沪教版七年级数学第二学期第十五章平面直角坐标系定向攻克试题.docx》由会员分享,可在线阅读,更多相关《2022年精品解析沪教版七年级数学第二学期第十五章平面直角坐标系定向攻克试题.docx(34页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、七年级数学第二学期第十五章平面直角坐标系定向攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在平面直角坐标系中,点A的坐标为(4,3),若ABx轴,且AB5,当点B在第二象限时,点B的坐标是()A(9
2、,3)B(1,3)C(1,3)D(1,3)2、如图,在平面直角坐标系上有点A(1,0),点A第一次跳动至点A1(1,1),第四次向右跳动5 个单位至点A4(3,2),依此规律跳动下去,点A第2020次跳动至点A2020的坐标是( )A(2020,1010)B(1011,1010)C(1011,1010)D(2020,1010)3、如图,直角坐标平面xOy内,动点P按图中箭头所示方向依次运动,第1次从点(1,0)运动到点(0,1),第2次运动到点(1,0),第3次运动到点(2,2),按这样的运动规律,动点P第2021次运动到点( )A(2020,2)B(2020,1)C(2021,1)D(202
3、1,2)4、若点P(m,1)在第二象限内,则点Q(1m,1)在()A第四象限B第三象限C第二象限D第一象限5、若点在第一象限,则a的取值范围是( )ABCD无解6、根据下列表述,能确定位置的是( )A光明剧院8排B毕节市麻园路C北偏东40D东经116.16,北纬36.397、在平面直角坐标系中,下列各点与点(2,3)关于x轴对称的是( )A(2,3)B(3,2)C(2,3)D(2,3)8、已知A(2,5),若B是x轴上的一动点,则A、B两点间的距离的最小值为( )A2B3C3.5D59、若点在第三象限内,则m的值可以是( )A2B0CD10、点P(3,2)关于原点O的对称点的坐标是()A(3,
4、2)B(3,2)C(3,2)D(2,3)第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知点M(x,3)与点N(2,y)关于x轴对称,则xy_2、若点关于原点的对称点是,则_3、如图,平面直角坐标系中,是边长为2的等边三角形,作与关于点成中心对称,再作与于点成中心对称,如此作下去,则的顶点的坐标是_4、已知点A的坐标为,O为坐标原点,连结OA,将线段OA绕点顺时针旋转90得到线段,则点的坐标为_5、如果点P(m+3,2m4)在y轴上,那么m的值是 _三、解答题(10小题,每小题5分,共计50分)1、如图1,A(2,6),C(6,2),ABy轴于点B,CDx轴于点D(1
5、)求证:AOBCOD;(2)如图2,连接AC,BD交于点P,求证:点P为AC中点;(3)如图3,点E为第一象限内一点,点F为y轴正半轴上一点,连接AF,EFEFCE且EFCE,点G为AF中点连接EG,EO,求证:OEG452、如图,在平面直角坐标系中,点为坐标原点,点,点在轴的负半轴上,点,连接、,且,(1)求的度数;(2)点从点出发沿射线以每秒2个单位长度的速度运动,同时,点从点出发沿射线以每秒1个单位长度的速度运动,连接、,设的面积为,点运动的时间为,求用表示的代数式(直接写出的取值范围);(3)在(2)的条件下,当点在轴的正半轴上,点在轴的负半轴上时,连接、,且四边形的面积为25,求的长
6、3、如图,在平面直角坐标系中,的三个顶点都在格点上,点的坐标为,请回答下列问题(1)画出关于x轴对称的,并写出点的坐标(_,_)(2)点P是x轴上一点,当的长最小时,点P坐标为_;(3)点M是直线BC上一点,则AM的最小值为_4、格点三角形(顶点是网格线的交点的三角形)ABC在平面直角坐标系中的位置如图所示(1)A点坐标为 ;A点关于y轴对称的对称点A1坐标为 (2)请作出ABC关于y轴对称的A1B1C1; (3)请直接写出A1B1C1的面积5、在如图所示的平面直角坐标系中,A点坐标为(1)画出关于y轴对称的;(2)求的面积6、如图在平面直角坐标系中,ABC各顶点的坐标分别为: A(4,0),
7、B(1,4),C(3,1)(1)在图中作ABC使ABC和ABC关于x轴对称;(2)求ABC的面积7、如图1,将射线OX按逆时针方向旋转角,得到射线OY,如果点P为射线OY上的一点,且OP=a,那么我们规定用(a,)表示点P在平面内的位置,并记为P(a,)例如,图2中,如果OM=8,XOM=110,那么点M在平面内的位置,记为M(8,110),根据图形,解答下面的问题:(1)如图3,如果点N在平面内的位置记为N(6,30),那么ON=_;XON=_(2)如果点A,B在平面内的位置分别记为A(5,30),B(12,120),画出图形并求出AOB的面积8、在平面直角坐标系中描出以下各点:A(3,2)
8、、B(-1,2)、C(-2,-1)、D(4,-1)顺次连接A、B、C、D得到四边形ABCD;9、如图所示,在平面直角坐标系中,的顶点坐标分别是,和(1)已知点关于轴的对称点的坐标为,求,的值;(2)画出,且的面积为 ;(3)画出与关于轴成对称的图形,并写出各个顶点的坐标10、多多和爸爸、妈妈周末到白银市金鱼公园动物园游玩,回到家后,她利用平面直角坐标系画出了白银市金鱼公园动物园的景区地图,如图所示可是她忘记了在图中标出原点、x轴和y轴,只知道东北虎的坐标为请你帮她画出平面直角坐标系,并写出其他各景点的坐标-参考答案-一、单选题1、A【分析】根据平行及线段长度、点B在第二象限,可判断点B一定在点
9、A的左侧,且两个点纵坐标相同,再由线段长即可确定点B的坐标【详解】解:轴,且,点B在第二象限,点B一定在点A的左侧,且两个点纵坐标相同,即,故选:A【点睛】题目主要考查坐标系中点的坐标,理解题意,掌握坐标系中点的特征是解题关键2、C【分析】根据图形观察发现,第偶数次跳动至点的坐标,横坐标是次数的一半加上1,纵坐标是次数的一半,然后写出即可【详解】解:观察发现,第2次跳动至点的坐标是(2,1),第4次跳动至点的坐标是(3,2),第6次跳动至点的坐标是(4,3),第8次跳动至点的坐标是(5,4),第2n次跳动至点的坐标是(n+1,n),第2020次跳动至点的坐标是(1010+1,1010)即(10
10、11,1010)故选C【点睛】本题考查了坐标与图形的性质,以及图形的变化问题,结合图形得到偶数次跳动的点的横坐标与纵坐标的变化情况是解题的关键3、B【分析】观察图形可知,每4次运动为一个循环组循环,并且每一个循环组向右运动4个单位,用2021除以4,然后根据商和余数的情况确定运动后点的坐标即可【详解】解:点的运动规律是每运动四次向右平移四个单位,动点第2021次运动时向右个单位,点此时坐标为,故选:B【点睛】本题主要考查平面直角坐标系下的规律探究题,解答时注意探究动点的运动规律,又要注意动点的坐标的象限符号4、A【分析】直接利用第二象限内点的坐标特点得出m的取值范围进而得出答案【详解】点P(m
11、,1)在第二象限内,m0,1m0,则点Q(1m,1)在第四象限故选:A【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-)5、B【分析】由第一象限内的点的横纵坐标都为正数,可列不等式组,再解不等式组即可得到答案.【详解】解: 点在第一象限, 由得: 由得: 故选B【点睛】本题考查的是根据点所在的象限求解字母的取值范围,掌握坐标系内点的坐标特点是解本题的关键.6、D【分析】根据位置的确定需要两个条件对各选项分析判断即可得解【详解】解:光明剧院8排,没有明确具体
12、位置,故此选项不合题意;毕节市麻园路,不能确定位置,故此选项不合题意;北偏东,没有明确具体位置,故此选项不合题意;东经,北纬,能确具体位置,故此选项符合题意;故选:D【点睛】本题考查了坐标确定位置,解题的关键是理解位置的确定需要两个条件7、A【分析】关于轴对称的两个点的坐标特点:横坐标不变,纵坐标互为相反数,据此直接作答即可.【详解】解:点(2,3)关于x轴对称的是 故选A【点睛】本题考查的是关于轴对称的两个点的坐标特点,掌握“关于轴对称的两个点的坐标特点:横坐标不变,纵坐标互为相反数”是解本题的关键.8、D【分析】当ABx轴时,AB距离最小,最小值即为点A纵坐标的绝对值,据此可得【详解】解:
13、A(2,5),且点B是x轴上的一点,当ABx轴时,AB距离最小,即B点(-2,0)A、B两点间的距离的最小值5故选:D【点睛】本题考查了直线外一点与直线上各点连接的所有线段中,垂线段最短;直线外一点到这条直线的垂线段的长度,叫做点到直线的距离9、C【分析】根据第三象限内点的特点可知横纵坐标都为负,据此判断即可【详解】解:点在第三象限内,m的值可以是故选C【点睛】本题考查了第三象限内点的坐标特征,掌握各象限内点的坐标特征是解题的关键平面直角坐标系中各象限点的坐标特点:第一象限的点:横坐标0,纵坐标0;第二象限的点:横坐标0;第三象限的点:横坐标0,纵坐标0,纵坐标010、B【分析】根据“平面直角
14、坐标系中任意一点P(x,y),关于原点的对称点是(x,y),即关于原点的对称点,横纵坐标都变成相反数”解答【详解】解:点P(3,2)关于原点O的对称点P的坐标是(3,2)故选:B【点睛】本题主要考查了关于原点对称的点的坐标的特点,正确掌握横纵坐标的关系是解题关键二、填空题1、5【分析】利用关于x轴对称的点的坐标特点可得x、y的值,进而可得答案【详解】解:点M(x,3)与点N(2,y)关于x轴对称,x2,y3,xy5,故答案为:5【点睛】本题考查了坐标与图象变化的轴对称问题,如果在坐标系中,点A与点B关于直线X对称,那么点A的横坐标不变,纵坐标为相反数相反的,如果有两点关于直线Y对称,那么点A的
15、横坐标为相反数,纵坐标不变2、【分析】根据关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,可得答案【详解】解:由关于坐标原点的对称点为,得,解得:故答案为:【点睛】本题考查了关于原点的对称的点的坐标,解题的关键是掌握关于原点对称的点的横坐标互为相反数,纵坐标互为相反数3、【分析】首先根据是边长为2的等边三角形,可得的坐标为,的坐标为;然后根据中心对称的性质,分别求出点、的坐标各是多少;最后总结出的坐标的规律,求出的坐标是多少即可【详解】解:是边长为2的等边三角形,的坐标为:,的坐标为:,与关于点成中心对称,点与点关于点成中心对称,点的坐标是:,与关于点成中心对称,点与点关于点成中心对称,
16、点的坐标是:,与关于点成中心对称,点与点关于点成中心对称,点的坐标是:,的横坐标是:,的横坐标是:,当为奇数时,的纵坐标是:,当为偶数时,的纵坐标是:,顶点的纵坐标是:,是正整数)的顶点的坐标是:,的顶点的横坐标是:,纵坐标是:,故答案为:【点睛】此题主要考查了中心对称的性质、坐标与图形性质、等边三角形的性质等知识;熟练掌握等边三角形的性质和中心对称的性质,分别判断出的横坐标和纵坐标是解题的关键4、(b,a)【分析】设A在第一象限,画出图分析,将线段OA绕点O按顺时针方向旋转90得OA1,如图所示根据旋转的性质,A1B1AB,OB1OB综合A1所在象限确定其坐标,其它象限解法完全相同【详解】解
17、:设A在第一象限,将线段OA绕点O按顺时针方向旋转90得OA1,如图所示A(a,b),OBa,ABb,A1B1ABb,OB1OBa,因为A1在第四象限,所以A1(b,a),A在其它象限结论也成立故答案为:(b,a),【点睛】本题考查了图形的旋转,设点A在某一象限是解题的关键5、-3【分析】点P在y轴上则该点横坐标为0,可解得m的值【详解】解:在y轴上,m+3=0,解得m=-3故答案为:-3【点睛】本题主要考查了点的坐标,解决本题的关键是掌握好坐标轴上的点的坐标的特征,y轴上的点的横坐标为0三、解答题1、(1)见解析;(2)见解析;(3)见解析【分析】(1)根据即可证明;(2)过点作轴,交于点,
18、得出,由平行线的性质得,由轴得,由得,故可得,从而得出,推出,根据证明,得出即可得证;(3)延长到,使,连接,延长交于点,根据证明,得出,故,由平行线的性质得出,进而推出,根据证明,故,即可证明【详解】(1)轴于点,轴于点,;(2)如图2,过点作轴,交于点,轴, 在与中,即点为中点;(3)如图3,延长到,使,连接,延长交于点,即【点睛】本题考查全等三角形的判定与性质,利用做辅助线作全等三角形是解决本题的关键2、(1);(2);(3)5【分析】(1)根据非负数的性质求得的值,进而求得,即可证明是等腰直角三角形,即可求得的度数;(2)分点在轴正半轴,原点,轴负半轴三种情况,根据点的运动表示出线段长
19、度,进而根据三角形的面积公式即可列出代数式;(3)过点作,连接,根据四边形的面积求得,进而求得,由,设,则,证明,进而可得,进一步导角可得,根据等角对等边即可求得【详解】(1)是等腰直角三角形,(2)当点在轴正半轴时,如图, ,当点在原点时,都在轴上,不能构成三角形,则时,不存在当点在轴负半轴时,如图, , ,综上所述:(3)如图,过点作,连接,设,则, 是等腰直角三角形在和中,是等腰直角三角形中,又【点睛】本题考查了非负数的性质,等腰三角形的性质与判定,全等三角形的性质与判定,正确的添加辅助线是解题的关键3、(1)5,-3;(2)(,0);(3)【分析】(1)利用关于x轴对称的点的坐标特征写
20、出A1、B1、C1的坐标,然后描点即可;(2)连接BC1交x轴于点P,利用两点之间线段最短可判断P点满足条件,利用待定系数法求得直线BC1的解析式,即可求解;(3)利用割补法求得ABC的面积,利用两点之间的距离公式求得BC的长,再利用面积法即可求解【详解】解:(1)如图,A1B1C1为所作,点C1的坐标为(5,-3);故答案为:5,-3;(2)如图,点P为所作设直线BC1的解析式为y=kx+b,点C1的坐标为(5,-3),点B的坐标为(1,2),解得:,直线BC1的解析式为y=x+,当y=0时,x=,点P的坐标为(,0);故答案为:(,0);(3)根据垂线段最短,当AM垂直BC时,垂线段AM取
21、得最小值,ABC的面积为24-21-41-31=;BC=,AM=,AM=故答案为:【点睛】本题考查了作图-轴对称变换:几何图形都可看作是由点组成,我们在画一个图形的轴对称图形时,也是先从确定一些特殊的对称点开始的也考查了最短路径问题注意:关于x轴对称的点,横坐标相同,纵坐标互为相反数4、(1)(-2,3);(2,3);(2)见解析;(3)【分析】(1)根据平面直角坐标系可得A点坐标,再根据关于y轴对称的点的坐标特点可得A1坐标;(2)首先确定A、B、C三点坐标,再连接即可;(3)根据割补求解可得答案【详解】解:(1)A点坐标为 (-2,3);A点关于y轴对称的对称点A1坐标为 (2,3)故答案
22、为:(-2,3);(2,3);(2)如图所示A1B1C1;(3)A1B1C1的面积:22-12-12-11=【点睛】本题主要考查了作图轴对称变换,关键是掌握图形都是由点组成的,作轴对称图形,就是寻找特殊点的对称点注意:关于y轴对称的点,纵坐标相同,横坐标互为相反数5、(1)见解析;(2)【分析】(1)分别作A、B、C三点关于y轴的对称点A1、B1、C1,顺次连接A1、B1、C1即可得答案;(2)用ABC所在矩形面积减去三个小三角形面积即可得答案【详解】(1)分别作A、B、C三点关于y轴的对称点A1、B1、C1,A1B1C1即为所求;(2)SABC=33=【点睛】本题考查了作轴对称图形和运用拼凑
23、法求不规则三角形的面积,其中掌握拼凑法求不规则图形的面积是解答本题的关键6、(1)见解析;(2)11.5【分析】(1)直接利用关于x轴对称点的性质,进而得出答案;(2)利用ABC所在矩形面积减去周围三角形面积进而得出答案【详解】解:(1)如图所示(2)【点睛】此题主要考查了轴对称变换以及三角形面积求法,正确得出对应点位置是解题关键7、(1)6,30;(2)见解析,30【分析】(1)由题意得第一个坐标表示此点距离原点的距离,第二个坐标表示此点与原点的连线与x轴所夹的角的度数;(2)根据相应的度数判断出AOB的形状,再利用三角形的面积公式求解即可【详解】(1)根据点N在平面内的位置N(6,30)可
24、知,ON=6,XON=30.答案:6,30(2)如图所示:A(5,30),B(12,120),BOX=120,AOX=30,AOB=90,OA=5,OB=12,AOB的面积为OAOB=30.【点睛】本题考查了坐标确定位置及旋转的性质,解决本题的关键是理解所给的新坐标的含义8、见解析【分析】根据各点的坐标描出各点,然后顺次连接即可【详解】解:如图所示:【点睛】本题考查了坐标与图形,熟练掌握相关知识是解题的关键9、(1),;(2)作图见详解;13;(3)作图见详解;,【分析】(1)利用关于x轴的对称点的坐标特点(横坐标不变,纵坐标互为相反数)直接写出答案即可;(2)先确定A、B、C点的位置,然后顺
25、次连接,最后运用割补法计算三角形面积即可;(3)先确定A、B、C三点关于y轴对称的对称点位置,然后顺次连接即可;最后直接写出三个点的坐标即可【详解】解:(1)点关于x轴的对称点P的坐标为,;(2)如图:即为所求,SABC=84-1218-1232-1264=13,故答案为:13;(3)如图:A、B、C点关于y轴的对称点为:,顺次连接,即为所求,【点睛】此题主要考查了轴对称变换的作图题,确定组成图形关键点的对称点是解答本题的关键10、两栖动物的坐标为(4,1),飞禽的坐标为(3,4),非洲狮的坐标为(,5)【分析】先利用东北虎的坐标找到坐标原点,然后以坐标原点建系,进而找出其他景点的坐标【详解】解:由东北虎的坐标可知:坐标原点即为南门,以南门为坐标原点建系,如下图所示:故:两栖动物的坐标为(4,1),飞禽的坐标为(3,4),非洲狮的坐标为(,5)【点睛】本题主要是考查了写出直角坐标系中的点的坐标,解题的关键通过已知条件,找到坐标原点,进而才能求出其他点的坐标