2022年最新强化训练北师大版八年级数学下册第三章图形的平移与旋转专项测试试题(含答案解析).docx

上传人:知****量 文档编号:28161812 上传时间:2022-07-26 格式:DOCX 页数:21 大小:568.04KB
返回 下载 相关 举报
2022年最新强化训练北师大版八年级数学下册第三章图形的平移与旋转专项测试试题(含答案解析).docx_第1页
第1页 / 共21页
2022年最新强化训练北师大版八年级数学下册第三章图形的平移与旋转专项测试试题(含答案解析).docx_第2页
第2页 / 共21页
点击查看更多>>
资源描述

《2022年最新强化训练北师大版八年级数学下册第三章图形的平移与旋转专项测试试题(含答案解析).docx》由会员分享,可在线阅读,更多相关《2022年最新强化训练北师大版八年级数学下册第三章图形的平移与旋转专项测试试题(含答案解析).docx(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、八年级数学下册第三章图形的平移与旋转专项测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图在平面直角坐标系中,点N与点F关于原点O对称,点F的坐标是(3,2),则点N的坐标是( )A(3,2)B(3

2、,2)C(2,3)D(2,3)2、下列图形中,既是轴对称图形又是中心对称图形的是()ABCD3、下列图形中,是中心对称图形的是( )AB CD4、下列图形中不是中心对称图形的是( )ABCD5、下列各组图形中,能够通过平移得到的一组是( )ABCD6、对于坐标平面内的点,先将该点向右平移1个单位,再向上平移2个单位,这种点的运动称为点的斜平移,如点P(2,3)经1次斜平移后的点的坐标为(3,5)已知点A的坐标为(2,0),点Q是直线l上的一点,点A关于点Q的对称点为点B,点B关于直线l的对称点为点C,若点B由点A经n次斜平移后得到,且点C的坐标为(8,6),则ABC的面积是()A12B14C1

3、6D187、下列四个图案中,是中心对称图形的是()ABCD8、点M(2,4)先向左平移3个单位长度,再向上平移2个单位长度得到的点的坐标是()A(1,6)B(1,2)C(1,1)D(4,1)9、随着2022年北京冬奥会日渐临近,我国冰雪运动发展进入快车道,取得了长足进步在此之前,北京冬奥组委曾面向全球征集2022年冬奥会会徵和冬残奥会会徽设计方案,共收到设计方案4506件,以下是部分参选作品,其中既是轴对称图形又是中心对称图形的是( )ABCD10、下列图形既是轴对称图形又是中心对称图形的是()ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在平面直角坐标

4、系中,点P1的坐标为(,),将线段OP1绕点O按顺时针方向旋转45,再将其长度伸长为OP1的2倍,得到线段OP2;又将线段OP2绕点O按顺时针方向旋转45,长度伸长为OP2的2倍,得到线段OP3;如此下去,得到线段OP4,OP5,OPn(n为正整数),则点P2020的坐标是_2、已知点A(a,3)是点B(2,b)关于原点O的对称点,则a+b_3、在平面直角坐标系中,点关于原点的对称点坐标为_4、如图,正方形的边长为3,为边上一点,绕着点逆时针旋转后与重合,连结,则_5、在平面直角坐标系中,已知点A(a,3)与点B(2,b)关于原点对称,则ba_三、解答题(5小题,每小题10分,共计50分)1、

5、如图,在RtABC中,ACB=90,BAC=30,将线段CA绕点C逆时针旋转60,得到线段CD,连接AD,BD(1)依题意补全图形;(2)若BC=1,求线段BD的长2、如图,在方格纸中,每个小正方形的边长为一个长度单位,点A、B、C都在格点上(1)画出线段BC;(2)将线段BC向上平移三个单位,得到线段DE,在图中画出线段DE;(3)三角形ADE的面积= 3、如图,在平面直角坐标系中,ABC的顶点坐标分别为A(1,0),B(4,1),C(2,2)(1)直接写出点B关于原点对称的点B的坐标: ;(2)平移ABC,使平移后点A的对应点A1的坐标为(2,1),请画出平移后的A1B1C1;(3)画出A

6、BC绕原点O逆时针旋转90后得到的A2B2C24、已知与是两个大小不同的等腰直角三角形(1)如图1所示,连接AE,DB,则线段AE和DB的数量关系和位置关系分别是:_(请直接写出结论)(2)如图2所示,连接DB,将线段DB绕D点顺时针旋转90到DF,连接AF,请写出线段DE和AF的关系,并说明理由5、如图,在中,点D在边AC上,且线段BD绕着点B按逆时针方向旋转120能与BE重合,点F是ED与AB的交点(1)求证:;(2)若,求的度数-参考答案-一、单选题1、A【分析】根据点F点N关于原点对称,即可求解【详解】解:F点与N点关于原点对称,点F的坐标是(3,2),N点坐标为(3,2)故选:A【点

7、睛】本题主要考查了关于原点对称的点的坐标特征,熟练掌握若两点关于原点对称,横纵坐标均互为相反数是解题的关键2、D【详解】解:是轴对称图形,不是中心对称图形,故本选项不符合题意;是轴对称图形,不是中心对称图形,故本选项不符合题意;不是轴对称图形,也不是中心对称图形,故本选项不符合题意;既是轴对称图形,又是中心对称图形,故本选项符合题意故选:D【点睛】本题考查了中心对称图形与轴对称图形的概念,解题的关键是判断轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;判断中心对称图形是要寻找对称中心,旋转180度后与原图重合3、B【分析】根据中心对称图形的定义求解即可【详解】解:A、不是中心对称图形,不

8、符合题意;B、是中心对称图形,符合题意;C、不是中心对称图形,不符合题意;D、不是中心对称图形,不符合题意故选:B【点睛】此题考查了中心对称图形,解题的关键是熟练掌握中心对称图形的定义中心对称图形:在平面内,把一个图形绕着某个点旋转180,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形4、B【分析】根据中心对称图形的概念求解【详解】解:A、是中心对称图形,故本选项不合题意;B、不是中心对称图形,故本选项符合题意;C、是中心对称图形,故本选项不合题意;D、是中心对称图形,故本选项不合题意故选:B【点睛】本题考查了中心对称图形的知识,把一个图形绕某一点旋转180,如果旋转后的图形

9、能够与原来的图形重合,那么这个图形就叫做中心对称图形5、B【分析】根据平移的性质对各选项进行判断【详解】A、左图是通过翻折得到右图,不是平移,故不符合题意;B、上图可通过平移得到下图,故符合题意;C、不能通过平移得到,故不符合题意;D、不能通过平移得到,故不符合题意;故选B【点睛】本题主要考查平移的性质,熟练掌握平移的性质是解题的关键6、A【分析】连接CQ,根据中心和轴对称的性质和直角三角形的判定得到ACB90,延长BC交x轴于点E,过C点作CFAE于点F,根据待定系数法得出直线的解析式进而解答即可【详解】解:连接CQ,如图:由中心对称可知,AQBQ,由轴对称可知:BQCQ,AQCQBQ,QA

10、CACQ,QBCQCB,QAC+ACQ+QBC+QCB180,ACQ+QCB90,ACB90,ABC是直角三角形,延长BC交x轴于点E,过C点作CFAE于点F,如图,A(2,0),C(8,6),AFCF6,ACF是等腰直角三角形,AEC45,E点坐标为(14,0),设直线BE的解析式为ykx+b,C,E点在直线上,可得:,解得:,yx+14,点B由点A经n次斜平移得到,点B(n+2,2n),由2nn2+14,解得:n4,B(6,8),ABC的面积SABESACE12812612,故选:A【点睛】本题考查轴对称的性质,中心对称的性质,等腰三角形的判定与性质,求解一次函数的解析式,得到的坐标是解本

11、题的关键7、A【分析】中心对称图形是指绕一点旋转180后得到的图形与原图形能够完全重合的图形,由此判断即可【详解】解:根据中心对称图形的定义,可知A选项的图形为中心对称图形,故选:A【点睛】本题考查中心对称图形的识别,掌握中心对称图形的基本定义是解题关键8、A【分析】直接利用平移中点的变化规律求解即可,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减【详解】,得到的点的坐标是故选:A【点睛】本题考查图形的平移变换,关键是要懂得左右移动改变点的横坐标,左减,右加;上下移动改变点的纵坐标,下减,上加9、C【分析】根据轴对称图形与中心对称图形的概念求解【详解】A是轴对称图形,不是中心

12、对称图形,故此选项不合题意;B不是轴对称图形,是中心对称图形,故此选项不符合题意;C是轴对称图形,也是中心对称图形,故此选项合题意;D不是轴对称图形,也不是中心对称图形,故此选项不合题意故选:C【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合10、B【分析】根据轴对称图形与中心对称图形的概念求解【详解】解:A不是中心对称图形,也不是轴对称图形,故此选项不合题意;B是轴对称图形,也是中心对称图形,故此选项符合题意;C是轴对称图形,不是中心对称图形,故此选项不合题意;D不是轴对称图

13、形,是中心对称图形,故此选项不合题意故选:B【点睛】此题主要考查了中心对称图形与轴对称图形的概念:轴对称图形:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形;中心对称图形:在同一平面内,如果把一个图形绕某一点旋转180,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形二、填空题1、(0,)【分析】根据题意得出OP1=1,OP2=2,OP3=4,如此下去,得到线段OP4=8=23,OP5=16=24,OPn=2n-1,再利用旋转角度得出点P2020的坐标与点P4的坐标在同一直线上,进而得出答案【详解】解:点P1的坐标为(,),将线段OP1绕点O按顺时针方向旋

14、转45,再将其长度伸长为OP1的2倍,得到线段OP2;OP1=1,OP2=2,OP3=4,如此下去,得到线段OP4=23,OP5=24,OPn=2n-1,由题意可得出线段每旋转8次旋转一周,20208=2524,点P2020的坐标与点P4的坐标在同一直线上,正好在y轴的负半轴上,点P2020的坐标是(0,)故答案为:(0,)【点睛】此题主要考查了点的变化规律,根据题意得出点P2020的坐标与点P4的坐标在同一直线上是解题关键2、5【分析】根据关于原点对称的点的特点可得a,b的值,相加即可【详解】解:点A(a,3)是点B(2,b)关于原点O的对称点,a2,b3,a+b5故答案为5【点睛】本题考查

15、了关于原点对称的点的特点,掌握“关于原点对称的两个点,横坐标、纵坐标分别互为相反数”是解题的关键3、(-4,7)【分析】根据两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点O的对称点是P(-x,-y),进而得出答案【详解】解:点关于原点的对称点坐标为(-4,7),故答案是:(-4,7)【点睛】此题主要考查了原点对称点的性质,正确掌握横纵坐标的符号关系是解题关键4、【分析】根据旋转得旋转角为,可知,然后根据勾股定理求出即可求出【详解】根据旋转得旋转角为,, 故答案为:【点睛】本题主要考查了旋转的性质以及勾股定理,根据旋转得出,是解题的关键5、【分析】根据两个点关于原点对称时,它

16、们的坐标符号相反,即点P(x,y)关于原点O的对称点是P(-x,-y),进而得出答案【详解】解:点A(a,3)与点B(2,b)关于原点对称,a=-2,b=3,ba= 3-2=故答案为:【点睛】本题主要考查了关于原点对称点的性质,正确记忆关于原点对称点的性质是解题关键三、解答题1、(1)见解析;(2)【分析】(1)根据线段旋转的方法,得出,然后连接AD,BD即可得;(2)根据角的直角三角形的性质和勾股定理可得,由旋转的性质可得是等边三角形,再利用勾股定理求解即可【详解】解:(1)根据线段旋转方法,如图所示即为所求; (2) , , , 线段CA绕点C逆时针旋转60得到线段CD,且,是等边三角形,

17、 , , 在中,【点睛】题目主要考查旋转图形的作法及性质,勾股定理,角的直角三角形的性质,等边三角形的性质等,理解题意,作出图形,综合运用各个定理性质是解题关键2、(1)见解析;(2)见解析;(3)8【分析】(1)连接B、C两点即可;(2)根据平移的定义,得出对应点的位置,连接即可;(3)根据三角形的面积公式计算即可【详解】解:(1)线段BC如图所示,(2)线段DE如图所示,(3)三角形ADE的面积=【点睛】本题考查作图-平移变换解题的关键是熟练掌握平移变换的性质.3、(1)(4,1);(2)见解析;(3)见解析【分析】(1)根据关于原点对称的两点的横纵坐标均与原来点的横纵坐标互为相反数,据此

18、可得答案;(2)将三个点分别向右平移3个单位、再向上平移1个单位,继而首尾顺次连接即可;(3)将三个点分别绕原点O逆时针旋转90后得到对应点,再首尾顺次连接即可【详解】(1)点B关于原点对称的点B的坐标为(4,1),故答案为:(4,1);(2)如图所示,A1B1C1即为所求(3)如图所示,A2B2C2即为所求【点睛】本题主要考查作图平移变换、旋转变换,解题的关键是掌握平移变换和旋转变换的定义与性质,并据此得出变换后的对应点4、(1),;(2),理由见解析【分析】(1)由与是两个大小不同的等腰直角三角形,可证与全等,即可知,延长BD交AE于点H,相关角度运算后即可得(2)由边角边证明后,进行相关

19、角度运算即可得【详解】(1)如图所示,延长BD交AE于点H与是两个大小不同的等腰直角三角形AC=BC,ACE=DCE=90,CE=CD,EAC=DBC在中,CDB+DBC=90CDB+EAC =90AHD =180-CDB-EAC= 90(2) 设DE与AF交于N,由题意得, ,即【点睛】本题考查了全等三角形的判定,等腰直角三角形的性质以及旋转的性质,由等腰直角三角形的性质及定义得到判定三角形全等的条件是解题的关键5、(1)见解析;(2)【分析】(1)由旋转的性质可得,再证明,结合 从而可得结论;(2)由可得,再利用等腰三角形的性质求解,再利用三角形的内角和定理可得答案.【详解】证明:(1)线段BD绕着点B按逆时针方向旋转120能与BE重合,(SAS),(2)解:由(1)知 ,【点睛】本题考查的是全等三角形的判定与性质,旋转的性质,等腰三角形的性质,掌握“旋转前后的对应边相等,对应角相等”是解本题的关键.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁