《强化训练北师大版八年级数学下册第三章图形的平移与旋转专题攻克试题(含答案解析).docx》由会员分享,可在线阅读,更多相关《强化训练北师大版八年级数学下册第三章图形的平移与旋转专题攻克试题(含答案解析).docx(22页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、八年级数学下册第三章图形的平移与旋转专题攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列图形中不是中心对称图形的是( )ABCD2、在平面直角坐标系中,将点(3,-4)平移到点(-1,4),经过的
2、平移变换为( )A先向左平移4个单位长度,再向上平移4个单位长度B先向左平移4个单位长度,再向上平移8个单位长度C先向右平移4个单位长度,再向下平移4个单位长度D先向右平移4个单位长度,再向下平移8个单位长度3、如图,若绕点A按逆时针方向旋转40后与重合,则( ) A40B50C70D1004、古典园林中的窗户是中国传统建筑装饰的重要组成部分,一窗一姿容,一窗一景致下列窗户图案中,是中心对称图形的是( )ABCD5、下列图形中,是中心对称图形也是轴对称图形的是()ABCD6、如图所示,在平面直角坐标系中,点A(0,4),B(2,0),连接AB,点D为AB的中点,将点D绕着点A旋转90得到点D的
3、坐标为( )A(2,1)或(2,1)B(2,5)或(2,3)C(2,5)或(2,3)D(2,5)或(2,5)7、如图,是由ABO平移得到的,点A的坐标为(-1,2),它的对应点的坐标为(3,4),ABO内任意点P(a,b)平移后的对应点的坐标为( )A(a,b)B(-a,-b)C(a+2,b+4)D(a+4,b+2)8、已知点M(m,1)与点N(3,n)关于原点对称,则m+n的值为()A3B2C2D39、小明将图案绕某点连续旋转若干次,每次旋转相同角度,设计出一个外轮廓为正六边形的图案(如图),则可以为( )A30B60C90D12010、如图,的顶点坐标为,若将绕点按顺时针方向旋转90,再向
4、左平移2个单位长度,得到,则点的对应点的坐标是( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在平面直角坐标系中,一次函数y2x4的图像与x轴、y轴分别交于点A、B,将直线AB绕点B顺时针旋转45,交x轴于点C,则直线BC的函数表达式为_2、如图,将三角形沿射线方向平移到三角形的位置,厘米,厘米,则平移距离为_厘米3、平面直角坐标系中,与点P(5,2)关于原点对称的点的坐标为_4、在平面直角坐标系中,将点P(3,1)向上平移5个单位长度到点M,则点M关于原点对称的点的坐标是 _5、坐标平面内的点P(m,2020)与点Q(2021,n)关于原点对称,则
5、mn_三、解答题(5小题,每小题10分,共计50分)1、已知点P(,)位于第三象限,点Q(,)位于第二象限且是由点P向上平移一定单位长度得到的(1)若点P的纵坐标为,试求出a的值;(2)在(1)题的条件下,若Q点到x轴的距离为1,试求出符合条件的点Q的坐标;(3)在(2)的条件下,x轴上是否存在一点M,使三角形MPQ的面积为10,若不存在,请说明理由;若存在,请求出M点的坐标;(4)若点P的横、纵坐标都是整数,试求出a的值以及线段PQ长度的取值范围2、如图,在平面直角坐标系中,直角的三个顶点分别是,(1)将以点为旋转中心顺时针旋转,画出旋转后对应的并写出各个顶点坐标;(2)分别连结,后,求四边
6、形的面积3、如图都是由边长为1的小等边三角形构成的网格图,每个网格图中有3个小等边三角形已涂上阴影(1)请在下面三个网格图中分别涂上一个三角形,使得4个阴影小等边三角形组成一个轴对称图形(3个图形中所涂三角形不同);(2)在两个网格图中分别涂上一个三角形,使得4个阴影小等边三角形组成一个中心对称图形(2个图形中所涂三角形不同)4、图中的小方格都是边长为1的正方形,ABC的顶点和O点都在正方形的顶点上(1)以点O为位似中心,在方格图中将ABC放大为原来的2倍,得到;(2)将绕点顺时针旋转90,画出旋转后得到的;(3)在(2)的旋转过程中,求:点的运动路径长为 ,边扫过的区域面积为 (写出解答过程
7、,结果保留)5、如图,BAD是由BEC在平面内绕点B旋转60而得,且ABBC,连接DE求证:BDEBCE;-参考答案-一、单选题1、B【分析】根据中心对称图形的概念求解【详解】解:A、是中心对称图形,故本选项不合题意;B、不是中心对称图形,故本选项符合题意;C、是中心对称图形,故本选项不合题意;D、是中心对称图形,故本选项不合题意故选:B【点睛】本题考查了中心对称图形的知识,把一个图形绕某一点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形2、B【分析】利用平移中点的变化规律求解即可【详解】解:在平面直角坐标系中,点(3,-4)的坐标变为(-1,4),点的横坐标
8、减少4,纵坐标增加8,先向左平移4个单位长度,再向上平移8个单位长度故选:B【点睛】本题考查了坐标与图形变化-平移:在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度3、C【分析】根据旋转的性质,可得 , ,从而得到,即可求解【详解】解:绕点A按逆时针方向旋转40后与重合, , , 故选:C【点睛】本题主要考查了图形的旋转,等腰三角形的性质,熟练掌握图形旋转前后对应线段相等,对应角相等是解题的关键4、C【分析】根据中
9、心对称图形的定义进行逐一判断即可【详解】解:A、不是中心对称图形,故此选项不符合题意;B、不是中心对称图形,故此选项不符合题意;C、是中心对称图形,故此选项符合题意;D、不是中心对称图形,故此选项不符合题意;故选C【点睛】本题主要考查了中心对称图形的识别,解题的关键在于能够熟练掌握中心对称图形的定义:把一个图形绕着某一个点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心5、C【分析】根据中心对称图形的定义旋转180后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出【详解】解:A、不是轴对称图形,是中心对称图形,故A选项不
10、符合题意;B、是轴对称图形,不是中心对称图形,故B选项不符合题意;C、既是轴对称图形,又是中心对称图形,故C选项符合题意;D、是轴对称图形,但不是中心对称图形,故D选项不符合题意故选:C【点睛】本题考查中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180后与原图重合6、C【分析】分顺时针和逆时针旋转90两种情况讨论,构造全等三角形即可求解【详解】解:设点D绕着点A逆时针旋转90得到点D1,分别过点D,D1作轴的垂线,分别交轴于点C、E,如图:根据旋转的性质得DAD1=90,A
11、D1=AD,AED1=ACD=90,D1+EAD1=90,EAD1 +DAC=90,D1=DAC,AD1EDAC,CD=AE,ED1=AC,A(0,4),B(2,0),点D为AB的中点,点D的坐标为(1,2),CD=AE=1,ED1=AC=AO-OC=2,点D1的坐标为(2,5);设点D绕着点A顺时针旋转90得到点D2,同理,点D2的坐标为(-2,3),综上,点D绕着点A旋转90得到点D的坐标为(-2,3)或(2,5),故选:C【点睛】本题考查了坐标与图形的变化-旋转,全等三角形的判定和性质,根据平面直角坐标系确定出点D1和D2的位置是解题的关键7、D【分析】根据点A的坐标和点的坐标确定平移规
12、律,即可求出点P(a,b)平移后的对应点的坐标【详解】解:ABO是由ABO平移得到的,点A的坐标为(-1,2),它的对应点A的坐标为(3,4),ABO平移的规律是:先向右移4个单位长度,再向上平移2个单位长度,ABO内任意点P(a,b)平移后的对应点P的坐标为(a+4,b+2)故选:D【点睛】此题考查了平面直角坐标系中点的平移规律,解题的关键是熟练掌握平面直角坐标系中点的平移规律点向左平移,点的横坐标减小,纵坐标不变;向右平移,点的横坐标增大,纵坐标不变;点向上平移,点的横坐标不变,纵坐标增大;向下平移,点的横坐标不变,纵坐标减小8、C【分析】利用两个点关于原点对称时,它们的坐标符号相反,即点
13、关于原点的对称点是,进而求出即可【详解】解:点与点关于原点对称,故故选:C【点睛】本题主要考查了关于原点对称点的坐标,解题的关键是正确掌握关于原点对称点的性质9、B【分析】由题意依据每次旋转相同角度,旋转了六次,且旋转了六次刚好旋转了一周为360进行分析即可得出答案.【详解】解:因为每次旋转相同角度,旋转了六次,且旋转了六次刚好旋转了一周为360,所以每次旋转相同角度 .故选:B.【点睛】本题考查旋转的性质,解题的关键是能够找到旋转中心,从而确定旋转角的度数10、A【分析】画出旋转平移后的图形即可解决问题【详解】解:旋转,平移后的图形如图所示,故选:A【点睛】本题考查坐标与图形变化旋转,解题的
14、关键是理解题意,学会利用图象法解决问题二、填空题1、#【分析】先求出点A、B的坐标,过点A作AFAB,交直线BC于点F,过点F作EFx轴,垂足为E,然后由全等三角形的判定和性质,等腰直角三角形的性质,求出点F的坐标,再利用待定系数法,即可求出答案【详解】解:一次函数y2x4的图像与x轴、y轴分别交于点A、B两点,令,则;令,则,点A为(2,0),点B为(0,4),;过点A作AFAB,交直线BC于点F,过点F作EFx轴,垂足为E,如图,ABF是等腰直角三角形,AF=AB,ABOFAE(AAS),AO=FE,BO=AE,点F的坐标为(,);设直线BC为,则,解得:,直线BC的函数表达式为;故答案为
15、:;【点睛】本题考查了一次函数的性质,全等三角形的判定和性质,等腰三角形的判定和性质,以及旋转的性质,解题的关键是熟练掌握所学的知识,正确的作出辅助线,从而进行解题2、3【分析】根据平移的性质和线段的和差关系即可求得即平移的距离【详解】解:由平移的性质可知,平移的距离,3、(5,2)【分析】根据“平面直角坐标系中任意一点,关于原点的对称点是,即关于原点的对称点,横纵坐标都变成相反数”解答【详解】解:点P(5,2)关于原点对称的点的坐标为故答案为【点睛】本题考查了关于原点对称的点的坐标的特点,正确记忆横纵坐标的符号是解题的关键4、【分析】根据点的平移规律,可得平移后的点,根据关于原点对称的点的横
16、、纵坐标都互为相反数,可得答案【详解】将点向上平移5个单位长度得到点,点M关于原点对称的点的坐标是,故答案为:【点睛】本题考查了平移与坐标变换,利用关于原点对称的点的横、纵坐标都互为相反数是解题关键5、-1【分析】根据“关于原点对称的点,横坐标与纵坐标都互为相反数”求出m、n的值,然后相加计算即可得解【详解】解:点P(m,-2020)与点Q(2021,n)关于原点对称,m=2021,n=2020,mn=1.故答案为:-1.【点睛】本题考查了关于原点对称的点的坐标,关于原点对称的点的横坐标互为相反数,纵坐标互为相反数三、解答题1、(1);(2)Q(,);(3)(,),(,);(4);【分析】(1
17、)点P的纵坐标为-3,即1-a=-3,解可得a的值;(2)点到x轴的距离为1,即点的纵坐标为1,据此求解即可;(3)根据三角形面积公式列式求解即可;(3)根据点P(2a-10,1-a)位于第三象限,且横、纵坐标都是整数,列得不等式组,求其整数解可得a的值以及线段PQ长度的取值范围【详解】解:(1)点P的纵坐标为,;(2),Q点是由P点向上平移到二象限的点,Q点到轴的距离为1,Q点的坐标为Q(,);(3)PQ的长为:, 设M点的坐标为(,),三角形MPQ的面积为10,即,M点的坐标为:(,),(,);(4)P点在第三象限,为整数,的值为:;PQ,而的整数【点睛】本题考查了图形的平移及平移特征,图
18、形的平移与图形上某点的平移相同,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减2、(1)图见解析,;(2)9【分析】利用网格特点和旋转的性质画出、的对应点、,从而得到;利用两个梯形的面积和减去一个三角形的面积计算四边形的面积【详解】解:如图,为所作,各个顶点坐标为,;如图,四边形的面积【点睛】本题考查了作图旋转变换,根据旋转的性质画出转后对应的是解决问题的关键3、(1)见解析;(2)见解析【分析】(1)直接利用轴对称图形的性质得出符合题意的答案;(2)直接利用中心对称图形的性质得出符合题意的答案【详解】解:(1)如图所示:都是轴对称图形;(2)如图所示:都是中心对称图形【点睛
19、】此题主要考查了利用轴对称设计图案、利用旋转设计图案,正确掌握相关定义是解题关键4、(1)见解析;(2)见解析;(3),【分析】(1)反向延长OC至,反向延长OA至,反向延长OB至,使,最后连接即可;(2)利用网格的特点与旋转的性质,画出点,的对应点,再连接即可解题;(3)利用弧长公式、扇形的面积公式解题即可【详解】解:(1)见图中 ;(2)见图中 ;(3) 故答案为:, 【点睛】本题考查作图位似变换,画位似图形的一般步骤:确定位似中心,分别连接并延长位似中心和能代表原图的关键点,再关键位似比,确定能代表所作的位似图形的关键点,最后顺次连接上述各点,得到放大或缩小的图形。也考查了旋转的性质、弧长公式、扇形的面积公式等知识,掌握相关知识是解题关键5、见解析【分析】根据旋转变换的性质得到,根据全等三角形的性质得到,由各角之间的关系可得,根据全等三角形的判定定理证明即可【详解】证明:由旋转的性质可知,在和中,【点睛】题目主要考查全等三角形的判定和性质,图形旋转的性质等,理解题意,理清各角之间的数量关系是解题关键