2022年中考特训浙教版初中数学七年级下册第五章分式综合训练练习题.docx

上传人:知****量 文档编号:28161788 上传时间:2022-07-26 格式:DOCX 页数:18 大小:282.28KB
返回 下载 相关 举报
2022年中考特训浙教版初中数学七年级下册第五章分式综合训练练习题.docx_第1页
第1页 / 共18页
2022年中考特训浙教版初中数学七年级下册第五章分式综合训练练习题.docx_第2页
第2页 / 共18页
点击查看更多>>
资源描述

《2022年中考特训浙教版初中数学七年级下册第五章分式综合训练练习题.docx》由会员分享,可在线阅读,更多相关《2022年中考特训浙教版初中数学七年级下册第五章分式综合训练练习题.docx(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、初中数学七年级下册第五章分式综合训练(2021-2022学年 考试时间:90分钟,总分100分)班级:_ 姓名:_ 总分:_题号一二三得分一、单选题(10小题,每小题3分,共计30分)1、已知实数,满足:,则的值为( )A1BC7D2、化简的结果是( )ABCD3、化简的结果正确的是( )ABCD4、新冠病毒的大小为125纳米也就是0.000000125米,这个数据用科学记数法可表示为( )A0.125107B1.25107C1.25107D0.1251075、计算的结果为( )A1BCD6、若,则( )ABCD7、若表示一个整数,则整数x可取值的个数是( )A2个B3个C4个D8个8、下列计

2、算中,正确的是( )ABCD9、已知关于x,y的方程组,则下列结论中正确的是:当a0时方程组的解是方程x+y1的解;当xy时,a;当xy1,则a的值为3或3;不论a取什么实数3xy的值始终不变()ABCD10、关于的分式方程有解,则字母的取值范围是( )A或BCD且二、填空题(5小题,每小题4分,共计20分)1、当前全球整体疫情形势依然严峻,截止2021年10月17日全球累计确诊新冠肺炎病例达到240000000例,数据240000000用科学记数法表示为_2、计算:_3、当x_时,分式的值为04、计算_5、计算:=_三、解答题(5小题,每小题10分,共计50分)1、计算:(2x2y)2 3x

3、y 2 2xy2、计算:(1) (2)解方程组:(1) (2)3、某社区拟建A,B两类摊位以搞活“地摊经济”,每个摊位的占地面积A类比B类多2平方米建A类,B类摊位每平方米的费用分别为40元,30元若用60平方米建A类或B类摊位,则A类摊位的个数恰好是B类摊位个数的(1)求每个A,B类摊位的占地面积(2)已知该社区规划用地70平方米建摊位,且刚好全部用完请写出建A,B两类摊位个数的所有方案,并说明理由请预算出该社区建成A,B两类摊位需要投入的最大费用4、计算(1) (2)5、(学习材料)拆项添项法在对某些多项式进行因式分解时,需要把多项式中的某一项拆成两项或多项,或者在多项式中添上两个仅符号相

4、反的项,这样的分解因式的方法称为拆项添项法,如:例1 分解因式:(解析)解:原式=例2 分解因式:(解析)解:原式=(知识应用)请根据以上材料中的方法,解决下列问题:(1)分解因式:_(2)运用拆项添项法分解因式:(3)化简:-参考答案-一、单选题1、B【分析】根据移项可得,将化为,根据非负数的性质确定的值,进而求得的值,代入代数式求解即可【详解】将移项可得, 解得代入解得故选B【点睛】本题考查了完全平方公式的应用,非负数的性质,负整指数幂的计算,根据完全平方公式变形是解题的关键2、D【分析】由题意直接根据负整数指数幂的意义进行计算即可求出答案【详解】解:.故选:D.【点睛】本题考查负整数指数

5、幂的意义,熟练掌握负整数指数幂的运算法则即是解题的关键.3、D【分析】直接运用分式的混合运算法则计算即可【详解】解:,故选:D【点睛】本题考查了分式的混合运算,熟练掌握分式的混合运算法则是解本题的关键4、C【分析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同【详解】解:0.000000125=1.25107,故选:C【点睛】此题考查科学记数法,注意n的值的确定方法,当原数小于1时,n是负整数,等于原数左数第一个非零数字前0的个数,按此方法即可正确求解5、B【分析】先把分母2a变形为(a2)

6、,即通分,再按分式的加减运算法则计算即可【详解】解:原式=;故选:B【点睛】此题考查的是分式的加减运算,化为同分母进行计算是解决此题关键6、A【分析】先根据有理数的乘方,零指数幂计算,然后比较大小,即可求解【详解】解:,故选:A【点睛】本题主要考查了有理数的乘方运算,零指数幂,有理数的比较大小,熟练掌握有理数的乘方运算法则,零指数幂法则是解题的关键7、C【分析】表示一个整数,则是6的因数,即可求解【详解】解:表示一个整数,是6的因数的值为-6,-3,-2,-1,1,2,3,6,相应的,x=,-3,-2,0,共8个满足x是整数的只有4个,故选C【点睛】本题首先要根据分式值是整数的条件,求出的值,

7、再求出x的值是解题的关键8、A【分析】根据单项式除以单项式、同底数幂的乘法、负指数幂及合并同类项可进行排除选项【详解】解:A、,正确,故符合题意;B、,原计算错误,故不符合题意;C、,原计算错误,故不符合题意;D、,原计算错误,故不符合题意;故选A【点睛】本题主要考查单项式除以单项式、同底数幂的乘法、负指数幂及合并同类项,熟练掌握单项式除以单项式、同底数幂的乘法、负指数幂及合并同类项是解题的关键9、B【分析】把a看做已知数表示出方程组的解,把a0代入求出x与y的值,代入方程检验即可;令xy求出a的值,即可作出判断;把x与y代入3xy中计算得到结果,判断即可;令2x3y求出a的值,判断即可【详解

8、】解:,据题意得:3x3a6,解得:xa2,把xa2代入方程x+y1+4a得:y3a+3,当a0时,x2,y3,把x2,y3代入x+y1得:左边2+31,右边1,是方程的解,故正确;当xy时,a23a+3,即a,故正确;当xy1时,(a2)3a+31,即a1,或 或 故错误3xy3a63a39,无论a为什么实数,3xy的值始终不变为9,故正确正确的结论是:,故选:B【点睛】此题考查了二元一次方程组的解,二元一次方程的解,以及解二元一次方程组,熟练掌握运算法则是解本题的关键10、D【分析】先解关于x的分式方程,求得x的值,然后再依据“关于x的分式方程有解”,即x0且x2建立不等式即可求a的取值范

9、围【详解】解:,去分母得:5(x-2)=ax,去括号得:5x-10=ax,移项,合并同类项得:(5-a)x=10,关于x的分式方程有解,5-a0,x0且x2,即a5,系数化为1得:,且,即a5,a0,综上所述:关于x的分式方程有解,则字母a的取值范围是a5,a0,故选:D【点睛】此题考查了求分式方程的解,由于我们的目的是求a的取值范围,根据方程的解列出关于a的不等式另外,解答本题时,容易漏掉5-a0,这应引起同学们的足够重视二、填空题1、2.4【分析】科学记数法的表示形式为a的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同

10、当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数【详解】解:240000000=2.4,故答案为:2.4【点睛】本题考查了用科学记数法表示较小的数,一般形式为a,其中1|a|10,n为由原数左边起第一个不为零的数字前面的0的个数所决定2、-3【分析】首先计算零指数幂、负整数指数幂,再作加减法【详解】解:=-3,故答案为:-3【点睛】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确零指数幂和负指数幂的运算法则3、4【分析】分式的值为0的条件是:(1)分子0;(2)分母0两个条件需同时具备,缺一不可据此可以解答本题【详解】解:分式的值为0,且,解得:x4时,分式的值为

11、0,故答案为:4【点睛】考查了分式的值为零的条件,若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0这两个条件缺一不可4、【分析】利用负整数指数幂,零指数幂的法则,即可求解【详解】解:故答案为: 【点睛】本题主要考查了负整数指数幂,零指数幂的法则,熟练掌握负整数指数幂,零指数幂的法则是解题的关键5、1【分析】直接利用立方根以及有理数的乘方运算法则、零指数幂的性质分别化简得出答案【详解】解:=2+(1)1=21=1故答案为:1【点睛】本题主要考查了立方根以及有理数的乘方运算、零指数幂的性质,正确化简各数是解题关键三、解答题1、【分析】根据运算顺序,先算乘方,再算乘除即可得答案【

12、详解】原式=,.【点睛】本题考查的是整式的乘除运算、指数幂,掌握整式的乘除运算法则和指数幂是解题关键.2、(1)6;(2)2a+1;(1);(2)【分析】(1)根据有理数的乘方,负整数指数幂,零指数幂的运算法则计算即可;(2)根据多项式乘多项式、平方差公式去括号,然后合并同类项即可(1)方程组利用代入消元法求出解即可;(2)方程组利用加减消元法求出解即可【详解】解:(1)原式=4+61=6;(2)原式=a2+3a-a-3-(a2-4)=a2+3a-a-3-a2+4=2a+1(1),把代入得:6y-3+4y=17解得:y=2,把y=2代入得:x=3,则方程组的解为;(2),+得:8x=16,解得

13、:x=2,把x=2代入得:y=1,则方程组的解为【点睛】本题主要考查实数的运算和整式的运算,解二元一次方程组,要牢记零指数幂以及负整数指数幂的计算,整式的运算法则以及消元的思想是解题的关键3、(1)每个A类摊位的占地面积为5平方米,则每个A类摊位的占地面积为3平方米;(2)见解析;2650元【分析】(1)设每个B类摊位的占地面积为x平方米,则每个A类摊位的占地面积为(x+2)平方米,由题意:若用60平方米建A类或B类摊位,则A类摊位的个数恰好是B类摊位个数的列出分式方程,解方程即可;(2)设建A类摊位a个,B类摊位b个,由题意:该社区规划用地70平方米建摊位,且刚好全部用完列出二元一次方程,求

14、出正整数解即可;求出建成A、B两类摊位需要投入的费用为-30b+2800,b越小,费用越大,即可求解【详解】解:(1)设每个B类摊位的占地面积为x平方米,则每个A类摊位的占地面积为(x+2)平方米,由题意得:,解得:x=3,经检验,x=3是原方程的解,则x+2=5,答:每个A类摊位的占地面积为5平方米,则每个A类摊位的占地面积为3平方米;(2)有4个方案,理由如下:设建A类摊位a个,B类摊位b个,由题意得:5a+3b=70,则a=14-b,a、b为正整数,或或或,共有4个方案:A类摊位11个,B类摊位5个;A类摊位8个,B类摊位10个;A类摊位5个,B类摊位15个;A类摊位2个,B类摊位20个

15、;建成A、B两类摊位需要投入的费用为:405a+303b=200(14-b)+90b=-30b+2800,b越小,费用越大,当b=5时,费用最大值=-305+2800=2650(元),即该社区建成A、B两类摊位需要投入的最大费用为2650元【点睛】本题考查了分式方程的应用、二元一次方程的应用等知识;找准等量关系,列出分式方程和二元一次方程是解题的关键4、(1);(2)【分析】(1)根据负整指数幂,零次幂,有理数的乘方运算计算即可;(2)根据同底数幂的乘法,幂的乘方进行计算,最后合并同类项【详解】(1)(2) 【点睛】本题考查了负整指数幂,零次幂,有理数的乘方运算,同底数幂的乘法,幂的乘方,掌握以上运算法则是解题的关键5、(1);(2);(3)【分析】(1)根据题意利用拆项添项法,并结合完全平方公式和平方差公式进行因式分解;(2)根据题意利用拆项添项法,并结合完全平方公式和平方差公式进行因式分解;(3)根据题意利用拆项添项法对分式的分子进行因式分解,然后再约分化简【详解】解:(1),;(2),;(3),原式【点睛】本题考查因式分解,理解题意,并熟练掌握完全平方公式和平方差公式的公式结构是关键

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁