《2022中考特训浙教版初中数学七年级下册第五章分式定向训练练习题(精选).docx》由会员分享,可在线阅读,更多相关《2022中考特训浙教版初中数学七年级下册第五章分式定向训练练习题(精选).docx(15页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、初中数学七年级下册第五章分式定向训练(2021-2022学年 考试时间:90分钟,总分100分)班级:_ 姓名:_ 总分:_题号一二三得分一、单选题(10小题,每小题3分,共计30分)1、己知关于x的分式的解为非负数,则a的范围为( )A且B且C且D且2、新冠疫苗载体腺病毒的直径约为0.000085毫米,将数0.000085用科学记数法表示为( )A8510-6B8.510-5C8.510-6D0.8510-43、若分式的值为零,那么( )A或B且CD4、等于( )ABCD5、下列计算中,正确的是( )ABCD6、已知,则的值为( )ABCD7、计算(2021)0的结果是( )A2021B20
2、21C1D08、空气中某种微粒的直径是0.000002967米,将0.000002967用科学记数法表示为( )ABCD9、新冠病毒由蛋白质外壳和单链核酸组成,直径大约在60140纳米(1纳米0.0000001厘米)某冠状病毒的直径约0.0000135厘米数据“0.0000135”用科学记数法表示为()A1.35106B13.5106C1.35105D0.13510410、计算:22(1)0( )A4B5CD二、填空题(5小题,每小题4分,共计20分)1、在疫情泛滥期间,口罩已经变成硬通货,其中,N95口罩尤其火爆,N95口罩对直径为0.0000003米(即0.3微米)的颗粒物过滤效果会大于等
3、于95%, 0.0000003用科学记数法表示为_2、若,则_3、若分式的值大于零,则x的取值范围是 _4、若0a1,2b1,则=_5、一项工作由甲单独做,需天完成;如果由甲、乙两人合作,则可提前2天完成,则乙单独完成该项工作需要的天数为_天三、解答题(5小题,每小题10分,共计50分)1、解方程:(1);(2)2、计算:(1)()2+(3.14)0(2)(a1)2a(a+2)3、先化简,再求值:(),其中a14、(1)计算:;(2)解方程组:5、计算:-参考答案-一、单选题1、A【分析】先求出分式方程的解,然后根据分式方程的解是非负数以及分式有意义的条件求解即可.【详解】解:,分式方程的解为
4、非负数且分式方程要有意义,解得且,故选A.【点睛】本题主要考查了解分式方程以及分式方程有意义的条件,解题的关键在于能够熟练掌握相关知识进行求解.2、B【分析】由题意依据绝对值小于1的正数也可以利用科学记数法表示,一般形式为a10-n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定进行分析即可【详解】解: 0.000085=8.510-5, 故选:B.【点睛】本题考查用科学记数法表示较小的数,一般形式为a10-n,其中1|a|10,n为由原数左边起第一个不为零的数字前面的0的个数所决定3、D【分析】由题意可得且,根据平方根的性质求解即
5、可【详解】解:由题意可得且,解得当时,不符合题意,舍去;当时,符合题意;所以,故选D【点睛】此题考查了分式的有关性质,涉及了求平方根,熟练掌握分式的有关性质是解题的关键4、A【分析】直接利用负整数指数幂的性质化简得出答案【详解】解:3-1=,故选:A【点睛】此题主要考查了负整数指数幂的性质,正确掌握相关性质是解题关键5、A【分析】根据单项式除以单项式、同底数幂的乘法、负指数幂及合并同类项可进行排除选项【详解】解:A、,正确,故符合题意;B、,原计算错误,故不符合题意;C、,原计算错误,故不符合题意;D、,原计算错误,故不符合题意;故选A【点睛】本题主要考查单项式除以单项式、同底数幂的乘法、负指
6、数幂及合并同类项,熟练掌握单项式除以单项式、同底数幂的乘法、负指数幂及合并同类项是解题的关键6、C【分析】根据可得,将代入化简可得结果【详解】解:,将代入中得:,故选:C【点睛】本题考查了分式的化简求值,将代入中约分化简是解题的关键7、C【分析】根据任何不为0的数的零次幂都等于1,可得答案【详解】解:a01 (a0),(2021)01,故选:C【点睛】本题考查零指数幂,掌握任何不为0的数的零次幂都等于1是得出正确答案的前提8、D【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a10n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零的数字前面的0
7、的个数所决定【详解】解:将0.000002967用科学记数法表示为2.967106故选:D【点睛】本题考查用科学记数法表示较小的数,一般形式为a10n,其中1|a|10,n为由原数左边起第一个不为零的数字前面的0的个数所决定9、C【分析】用科学记数法表示较小的数,一般形式为a10n,其中1|a|10,n为整数,据此判断即可【详解】故选C【点睛】此题主要考查了用科学记数法表示较小的数,一般形式为a10n,其中1|a|10,n为由原数左边起第一个不为零的数字前面的0的个数所决定,确定a与n的值是解题的关键10、C【分析】直接利用负指数幂的性质和零指数幂的性质分别化简进而得出答案【详解】解:原式=故
8、选C【点睛】此题主要考查了实数运算,正确化简各数是解题关键二、填空题1、3107【分析】根据用科学记数法表示较小的数,一般形式为a10n,其中1|a|10,n为由原数左边起第一个不为零的数字前面的0的个数所决定即可求解【详解】解:0.0000003用科学记数法表示为:3107故答案为:3107【点睛】本题考查了科学记数法,用科学记数法表示较小的数,一般形式为a10n,其中1|a|10,n为由原数左边起第一个不为零的数字前面的0的个数所决定2、0,6,8,【分析】根据非零的零次幂等于1,(1)的偶数次幂等于1,1的任何次幂等于1,可得答案【详解】解:m0时,(7)01,m71时,m8,(m7)8
9、1,m71时(m7)61,故答案为:0,6,8【点睛】本题考查了零次幂,非零的零次幂等于1,(1)的偶数次幂等于1,1的任何次幂等于1,以防遗漏3、且【分析】由已知可得分子x+20,再由分式的分母不等于零,得到x10,进而求出x的取值【详解】解:分式的值大于零,x+20,x2,x10,x1,故答案为x2且x1【点睛】本题考查分式的值;熟练掌握分式求值的特点,特别注意分式的分母不等于零这个隐含条件是解题的关键4、2【分析】先根据题意得出a10,b+20,再根据绝对值的性质化简即可解答【详解】解:0a1,2b1,a10,b+20,=11=2,故答案为:-2【点睛】本题考查有理数的减法运算、绝对值的
10、性质,会利用绝对值的性质化简是解答的关键5、【分析】设总工作量为单位“1”,由工作效率=工作总量工作时间可求得甲乙两人的合作效率,然后求得乙的工作效率,从而求解【详解】一项工作由甲单独做,需a天完成,甲的工作效率为,又由甲、乙两人合作,则可提前2天完成,甲、乙的合作效率为,乙的工作效率为,乙单独完成该项工作需要的天数为,故答案为: 【点睛】本题考查列分式以及分式的混合运算,解题的关键是掌握分式混合运算的计算法则及工程问题中“工作效率工作时间=工作总量”的等量关系三、解答题1、(1)x4;(2)x2【分析】两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解【详
11、解】解:(1)方程两边同时乘以x2得x3+x23,解整式方程得,x4,检验:当x4时,x20x4是原方程的解(2)方程两边同时乘以(x1)(2x+3)得:2x2x62(x2)(x1),整理得:5x10,解得:x2,检验:当x2时,(x1)(2x+3)0,分式方程的解为x2【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验2、(1)5;(2)4a+1【分析】(1)根据负指数幂和零次幂的运算法则进行计算即可得出答案;(2)根据完全平方公式及单项式乘以多项式法则进行计算,再合并同类项即可得出答案【详解】解:(1)原式;(2)原式【点睛】此题考查了负指数幂和零次幂的运算法则以及整式的
12、乘法,涉及了完全平方公式的应用,熟练掌握相关基础知识是解题的关键3、,-1【分析】先算括号内的减法,再把除法变成乘法,求出结果,最后代入求出即可【详解】解:原式 ,当a1时,原式【点睛】本题考查了分式的混合运算,对于分式的混合运算,应注意运算顺序:先算乘方,再算乘除,最后算加减,有括号的要先算括号内的此外,也应仔细观察式子的特点,灵活选择简便的方法计算,如使用运算律、公式等4、(1);(2)【分析】(1)先因式分解、再通分、最后化简即可;(2)用代入消元法解二元一次方程组即可【详解】解:(1);(2),得,得,将代入得,方程组的解为【点睛】本题考查分式的加减、二元一次方程组的解,熟练掌握分式的化简方法,掌握代入消元法和加减消元法解二元一次方程组是解题的关键5、【分析】负整数指数幂的运算法则为: 先计算负整数指数幂与零次幂的运算,再计算乘法与除法运算,最后计算加法运算即可.【详解】解:原式 = = = 【点睛】本题考查的是负整数指数幂的运算,零次幂的含义,掌握“负整数指数幂的运算法则与零次幂的含义”是解本题的关键.