2022年最新沪科版九年级数学下册第24章圆同步测试试题(含解析).docx

上传人:知****量 文档编号:28159723 上传时间:2022-07-26 格式:DOCX 页数:29 大小:855.11KB
返回 下载 相关 举报
2022年最新沪科版九年级数学下册第24章圆同步测试试题(含解析).docx_第1页
第1页 / 共29页
2022年最新沪科版九年级数学下册第24章圆同步测试试题(含解析).docx_第2页
第2页 / 共29页
点击查看更多>>
资源描述

《2022年最新沪科版九年级数学下册第24章圆同步测试试题(含解析).docx》由会员分享,可在线阅读,更多相关《2022年最新沪科版九年级数学下册第24章圆同步测试试题(含解析).docx(29页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、沪科版九年级数学下册第24章圆同步测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,PA是的切线,切点为A,PO的延长线交于点B,若,则的度数为( )A20B25C30D402、如图,AB,CD是

2、O的弦,且,若,则的度数为( )A30B40C45D603、下列图形中,是中心对称图形,但不是轴对称图形的是( )ABCD4、如图,CD是的高,按以下步骤作图:(1)分别以点A和点B为圆心,大于的长为半径作弧,两弧相交于G、H两点(2)作直线GH交AB于点E(3)在直线GH上截取(4)以点F为圆心,AF长为半径画圆交CD于点P则下列说法错误的是( ) ABCD5、下列四个图案中,是中心对称图形但不是轴对称图形的是( )ABCD6、如图,点A,B,C均在O上,连接OA,OB,AC,BC,如果OAOB,那么C的度数为( )A22.5B45C90D67.57、往直径为78cm的圆柱形容器内装入一些水

3、以后,截面如图所示,若水面宽,则水的最大深度为( )A36 cmB27 cmC24 cmD15 cm8、下列图形中,既是轴对称图形又是中心对称图形的是()ABCD9、在下列图形中,既是中心对称图形又是轴对称图形的是( )ABCD10、将等边三角形绕其中心旋转n时与原图案完全重合,那么n的最小值是( )A60B90C120D180第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、斛是中国古代的一种量器.据汉书 .律历志记载:“斛底,方而圜(hun)其外,旁有庣(tio)焉”意思是说:“斛的底面为:正方形外接一个圆,此圆外是一个同心圆” . 如图所示,问题:现有一斛,其底面的

4、外圆直径为两尺五寸(即2.5尺),“庣旁”为两寸五分(即两同心圆的外圆与内圆的半径之差为0.25尺),则此斛底面的正方形的边长为_尺2、如图,正方形ABCD的边长为1,O经过点C,CM为O的直径,且CM1过点M作O的切线分别交边AB,AD于点G,HBD与CG,CH分别交于点E,F,O绕点C在平面内旋转(始终保持圆心O在正方形ABCD内部)给出下列四个结论:HD2BG;GCH45;H,F,E,G四点在同一个圆上;四边形CGAH面积的最大值为2其中正确的结论有 _(填写所有正确结论的序号)3、在平面直角坐标系中,点关于原点对称的点的坐标是_4、如图,在平面直角坐标系中,一次函数y2x4的图像与x轴

5、、y轴分别交于点A、B,将直线AB绕点B顺时针旋转45,交x轴于点C,则直线BC的函数表达式为_5、在ABC中,已知ABC90,BAC30,BC1,如图所示,将ABC绕点A按逆时针方向旋转90后得到ABC则图中阴影部分的面积为_三、解答题(5小题,每小题10分,共计50分)1、如图 1,O为直线 DE上一点,过点 O在直线 DE上方作射线 OC,EOC=130将直角三角板AOB(OAB30)的直角顶点放在点O处,一条边 OA在射线 OD上,另一边 OB在直线 DE上方,将直角三角板绕点 O 按每秒 5的速度逆时针旋转一周,设旋转时间为t 秒(1)如图2,当t=4 时,AOC= ,BOE= ,B

6、OEAOC= ;(2)当三角板旋转至边 AB与射线 OE相交时(如图 3),试猜想AOC与BOE的数量关系,并说明理由;(3)在旋转过程中,是否存在某个时刻,使得射线 OA、OC、OD 中的某一条射线是另两条射线所成夹角的角平分线?若存在,请直接写出 t 的取值,若不存在,请说明理由2、在等边中,将线段AB绕点A顺时针旋转得到线段AD(1)若线段DA的延长线与线段BC相交于点E(不与点B,C重合),写出满足条件的的取值范围;(2)在(1)的条件下连接BD,交CA的延长线于点F依题意补全图形;用等式表示线段AE,AF,CE之间的数量关系,并证明3、如图,ABC是O的内接三角形,连接AO并延长交O

7、于点D,过点C作O的切线,与BA的延长线相交于点E(1)求证:ADEC;(2)若AD6,求线段AE的长4、如图,点D是上一点,与相交于点F,且(1)求证:;(2)求证:;(3)若点D是中点,连接,求证:平分5、元元同学在数学课上遇到这样一个问题:如图1,在平面直角坐标系xOy中,OA经过坐标原点O,并与两坐标轴分别交于B、C两点,点B的坐标为,点D在上,且,求OA的半径和圆心A的坐标元元的做法如下,请你帮忙补全解题过程:解:如图2,连接BC作AELOB于E、AFOC于F、(依据是 ),(依据是 ),BC是的直径(依据是 ),A的坐标为( )的半径为 -参考答案-一、单选题1、B【分析】连接OA

8、,如图,根据切线的性质得PAO=90,再利用互余计算出AOP=50,然后根据等腰三角形的性质和三角形外角性质计算B的度数【详解】解:连接OA,如图,PA是O的切线,OAAP,PAO=90,P=40,AOP=50,OA=OB,B=OAB,AOP=B+OAB,B=AOP=50=25故选:B【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系2、B【分析】由同弧所对的圆周角是圆心角的一半可得,利用平行线的性质:两直线平行,内错角相等即可得【详解】解:,故选:B【点睛】题目主要考查圆周角定理,平行线的性质等,理解题意,找出相关的角度是解题

9、关键3、B【分析】根据“把一个图形绕着某一个点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形”及“如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形”,由此问题可求解【详解】解:A、既不是轴对称图形也不是中心对称图形,故不符合题意;B、是中心对称图形但不是轴对称图形,故符合题意;C、既不是轴对称图形也不是中心对称图形,故不符合题意;D、是轴对称图形但不是中心对称图形,故不符合题意;故选B【点睛】本题主要考查中心对称图形及轴对称图形的识别,熟练掌握中心对称图形及轴对称图形的定义是解题的关键4、C【分析】连接AF、BF,由作法可知,

10、FE垂直平分AB,再根据可得AFE=45,进而得出AFB90,根据等腰直角三角形和圆周角定理可判断哪个结论正确【详解】解:连接AF、BF,由作法可知,FE垂直平分AB,故A正确;CD是的高,故B正确;,故C错误;,AFE=45,同理可得BFE=45,AFB90,故D正确;故选:C【点睛】本题考查了作垂直平分线和圆周角定理,解题关键是明确作图步骤,熟练运用垂直平分线的性质和圆周角定理进行推理证明5、D【分析】根据轴对称图形与中心对称图形的概念求解【详解】解:A、不是轴对称图形,不是中心对称图形,故此选项不符合题意;B、是轴对称图形,不是中心对称图形,故此选项不符合题意;C、是轴对称图形,是中心对

11、称图形,故此选项不符合题意;D、不是轴对称图形,是中心对称图形,故此选项符合题意;故选:D【点睛】此题主要考查了中心对称图形与轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合6、B【分析】根据同弧所对的圆周角是圆心角的一半即可得【详解】解:,故选:B【点睛】题目主要考查圆周角定理,准确理解,熟练运用圆周角定理是解题关键7、C【分析】连接,过点作于点,交于点,先由垂径定理求出的长,再根据勾股定理求出的长,进而得出的长即可【详解】解:连接,过点作于点,交于点,如图所示:则,的直径为,在中,即水的最大深度为,故选:C【点睛】

12、本题考查了垂径定理、勾股定理等知识,解题的关键是根据题意作出辅助线,构造出直角三角形是解答此题的关键8、B【详解】解:A是轴对称图形,不是中心对称图形,故不符合题意;B既是轴对称图形,又是中心对称图形,故符合题意;C不是轴对称图形,是中心对称图形,故不符合题意;D是轴对称图形,不是中心对称图形,故不符合题意故选:B【点睛】本题考查了中心对称图形与轴对称图形的概念,把一个图形绕某一点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中

13、心对称图形是要寻找对称中心,旋转180度后与原图重合9、B【分析】根据中心对称图形与轴对称图形的定义解答即可.【详解】解:A.是轴对称图形,不是中心对称图形,不符合题意;B既是中心对称图形又是轴对称图形,符合题意;C. 是轴对称图形,不是中心对称图形,不符合题意;D. 既不是中心对称图形,也不是轴对称图形,不符合题意.故选B.【点睛】本题主要考查的是中心对称图形与轴对称图形的定义.一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形叫作轴对称图形;把一个图形绕着某个点旋转180,如果旋转后的图形与另一个图形重合叫作中心对称图形.10、C【分析】根据旋转对称图形的概念(把一个图形绕着一个定点

14、旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角),找到旋转角,求出其度数【详解】解:等边三角形绕其中心旋转n时与原图案完全重合,因而绕其中心旋转的最小度数是=120故选C【点睛】本题考查了根据旋转对称性,掌握旋转的性质是解题的关键二、填空题1、【分析】如图,根据四边形CDEF为正方形,可得D=90,CD=DE,从而得到CE是直径,ECD=45,然后利用勾股定理,即可求解【详解】解:如图, 四边形CDEF为正方形,D=90,CD=DE,CE是直径,ECD=45,根据题意得:AB=2.5, , , ,即此斛底面的正方形的边长为 尺故答案为:

15、【点睛】本题主要考查了圆内接四边形,勾股定理,熟练掌握圆内接四边形的性质,勾股定理是解题的关键2、【分析】根据切线的性质,正方形的性质,通过三角形全等,证明HD=HM,HCM=HCD,GM=GB,GCB=GCM,可判断前两个结论;运用对角互补的四边形内接于圆,证明GHF+GEF=180,取GH的中点P,连接PA,则PA+PCAC,当PC最大时,PA最小,根据直径是圆中最大的弦,故PC=1时,PA最小,计算即可【详解】GH是O的切线,M为切点,且CM是O的直径,CMH=90,四边形ABCD是正方形,CMH=CDH=90,CM=CD,CH=CH,CMHCDH,HD=HM,HCM=HCD,同理可证,

16、GM=GB,GCB=GCM,GB+DH=GH,无法确定HD2BG,故错误;HCM+HCD+GCB+GCM=90,2HCM+2GCM=90,HCM+GCM=45,即GCH45,故正确;CMHCDH,BD是正方形的对角线,GHF=DHF,GCH=HDF=45,GHF+GEF=DHF +GCH+EFC=DHF +HDF+HFD=180,根据对角互补的四边形内接于圆,H,F,E,G四点在同一个圆上,故正确;正方形ABCD的边长为1,=1=,GAH=90,AC=取GH的中点P,连接PA,GH=2PA,=,当PA取最小值时,有最大值,连接PC,AC,则PA+PCAC,PAAC- PC,当PC最大时,PA最

17、小,直径是圆中最大的弦,PC=1时,PA最小,当A,P,C三点共线时,且PC最大时,PA最小,PA=-1,最大值为:1-(-1)=2-,四边形CGAH面积的最大值为2,正确;故答案为: 【点睛】本题考查了切线的性质,直径是最大的弦,三角形的全等,直角三角形斜边上的中线,四点共圆,正方形的性质,熟练掌握圆的性质,灵活运用直角三角形的性质,线段最短原理是解题的关键3、(3,4)【分析】关于原点对称的点,横坐标与纵坐标都互为相反数【详解】:由题意,得点(-3,-4)关于原点对称的点的坐标是(3,4),故答案为:(3,4)【点睛】本题考查了关于原点对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律

18、:关于原点对称的点,横坐标与纵坐标都互为相反数4、#【分析】先求出点A、B的坐标,过点A作AFAB,交直线BC于点F,过点F作EFx轴,垂足为E,然后由全等三角形的判定和性质,等腰直角三角形的性质,求出点F的坐标,再利用待定系数法,即可求出答案【详解】解:一次函数y2x4的图像与x轴、y轴分别交于点A、B两点,令,则;令,则,点A为(2,0),点B为(0,4),;过点A作AFAB,交直线BC于点F,过点F作EFx轴,垂足为E,如图,ABF是等腰直角三角形,AF=AB,ABOFAE(AAS),AO=FE,BO=AE,点F的坐标为(,);设直线BC为,则,解得:,直线BC的函数表达式为;故答案为:

19、;【点睛】本题考查了一次函数的性质,全等三角形的判定和性质,等腰三角形的判定和性质,以及旋转的性质,解题的关键是熟练掌握所学的知识,正确的作出辅助线,从而进行解题5、【分析】利用勾股定理求出AC及AB的长,根据阴影面积等于求出答案【详解】解:由旋转得,=BAC30,ABC90,BAC30,BC1,AC=2BC=2,AB=, 阴影部分的面积=,故答案为:【点睛】此题考查了求不规则图形的面积,正确掌握勾股定理、30度角直角三角形的性质、扇形面积计算公式及分析出阴影面积的构成特点是解题的关键三、解答题1、(1)30,70,40;(2)AOCBOE=40,理由见解析;(3)t 的取值为5或20或62【

20、分析】(1)先根据已知求出DOC、BOC,再求出当t=4时的旋转角的度数,再利用角的和与差求解即可;(2)设旋转角为x,用x表示AOC和BOE,即可得出结论;(3)分OA为DOC的平分线;OC为DOA的平分线;OD为COA的平分线三种情况,利用角平分线定义和旋转性质求出旋转角即可(1)解:EOC=130,AOB=BOE=90,DOC=180130=50,BOC=13090=40,当t=4时,旋转角45=20,AOC=DOCDOA=5020=30,BOE=9020=70,BOEAOC=7030=40,故答案为:30,70,40;(2)解:AOCBOE=40,理由为:设旋转角为x,当三角板旋转至边

21、 AB与射线 OE相交时,AOC=x50,BOE=x90,AOCBOE=(x50)(x90)=40;(3)解:存在,当OA为DOC的平分线时,旋转角5t =DOC=25,t=5;当OC为DOA的平分线时,旋转角5t =2DOC=100,t=20;当OD为COA的平分线时,3605t=DOC=50,t=62,综上,满足条件的t 的取值为5或20或62【点睛】本题考查角平分线的定义、旋转的性质、角的运算,熟练掌握旋转性质,利用分类讨论思想求解是解答的关键2、(1);(2)见解析;AE=AF+CE,证明见解析【分析】(1)根据“线段DA的延长线与线段BC相交于点E”可求解;(2)根据要求画出图形,即

22、可得出结论;在AE上截取AH=AF,先证AFDAHC,再证CHE=HCE,即可得出结果【详解】(1)如图:AD只能在锐角EAF内旋转符合题意故的取值范围为:;(2)补全图形如下:(3)AE=AF+CE,证明:在AE上截取AH=AF,由旋转可得:AB=AD,D=ABF,ABC为等边三角形,AB=AC,BAC=ACB=60,AD=AC,DAF=CAH,AFDAHC,AFD=AHC,D=ACH,AFB=CHE,AFB+ABF=ACH+HCE=60,CHE+D=D+HCE=60,CHE=HCE,CE=HE,AE=AH+HE=AF+CE【点睛】本题考查了旋转的性质,三角形外角的性质,等边三角形性质及应用

23、,解题的关键是正确画出图形和作出辅助线3、(1)见解析;(2)6【分析】(1)连接OC,根据CE是O的切线,可得OCE,根据圆周角定理,可得AOC=,从而得到AOC+OCE,即可求证;(2)过点A作AFEC交EC于点F,由AOC,OAOC,可得OAC,从而得到BAD,再由ADEC,可得,然后证得四边形OAFC是正方形,可得,从而得到AF=3,再由直角三角形的性质,即可求解【详解】证明:(1)连接OC,CE是O的切线,OCE,ABC,AOC2ABC,AOC+OCE,ADEC;(2)解:过点A作AFEC交EC于点F,AOC,OAOC,OAC,BAC,BAD,ADEC,OCE,AOC,AFC=90,

24、四边形OAFC是矩形,OAOC,四边形OAFC是正方形,在RtAFE中,AE=2AF=6【点睛】本题主要考查了圆周角定理,切线的性质,直角三角形的性质,正方形的判定和性质,熟练掌握相关知识点是解题的关键4、(1)证明见解析;(2)证明见解析;(3)证明见解析【分析】(1)在和中,故可证明三角形相似(2)由得出(3)法一:由题意知,由得,有,所以可得,又因为可得,;由于,进而说明,得出平分法二:通过得出F、D、C、E四点共圆,由得,从而得出平分【详解】解:(1)证明在和中 (2)证明:在和中 (3)证明:又D是中点,平分法二:F、D、C、E四点共圆又D是点,平分【点睛】本题考察了相似三角形的判定,全等三角形,角平分线,圆内接四边形等知识点解题的关键与难点在于角度的转化解题技巧:多个角度相等时可考虑将几何图形放入圆中利用同弧或等弧所对圆周角相等求解5、垂径定理,圆周角定理,圆周角定理,(1,),2【分析】根据垂径定理,圆周角定理依次分析解答【详解】解:如图2,连接BC作AEOB于E、AFOC于F、(依据是垂径定理),(依据是圆周角定理),BC是的直径(依据是圆周角定理),A的坐标为(1,),的半径为2,故答案为:垂径定理,圆周角定理,圆周角定理,(1,),2【点睛】此题考查了圆的知识,垂径定理、圆周角定理,熟记各定理知识并综合应用是解题的关键

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁