2022年最新沪科版九年级数学下册第24章圆同步测评试题(含详细解析).docx

上传人:可****阿 文档编号:32525324 上传时间:2022-08-09 格式:DOCX 页数:35 大小:1.17MB
返回 下载 相关 举报
2022年最新沪科版九年级数学下册第24章圆同步测评试题(含详细解析).docx_第1页
第1页 / 共35页
2022年最新沪科版九年级数学下册第24章圆同步测评试题(含详细解析).docx_第2页
第2页 / 共35页
点击查看更多>>
资源描述

《2022年最新沪科版九年级数学下册第24章圆同步测评试题(含详细解析).docx》由会员分享,可在线阅读,更多相关《2022年最新沪科版九年级数学下册第24章圆同步测评试题(含详细解析).docx(35页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、沪科版九年级数学下册第24章圆同步测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在ABC中,点O为AB中点以点C为圆心,CO长为半径作C,则C 与AB的位置关系是( )A相交B相切C相离D不确定2、

2、如图,点A、B、C在上,则的度数是( )A100B50C40D253、已知圆锥的底面半径为2cm,母线长为3cm,则其侧面积为( )cmA3B6C12D184、如图,在中,将绕点C逆时针旋转90得到,则的度数为( )A105B120C135D1505、如图,PA,PB是O的切线,A,B是切点,点C为O上一点,若ACB70,则P的度数为( ) A70B50C20D406、下列图形中,既是轴对称图形又是中心对称图形的是()ABCD7、往直径为78cm的圆柱形容器内装入一些水以后,截面如图所示,若水面宽,则水的最大深度为( )A36 cmB27 cmC24 cmD15 cm8、的边经过圆心,与圆相切

3、于点,若,则的大小等于( )ABCD9、若的圆心角所对的弧长是,则此弧所在圆的半径为( )A1B2C3D410、下列图形中,既是轴对称图形又是中心对称图形的是( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,AB是半圆O的弦,DE是直径,过点B的切线BC与O相切于点B,与DE的延长线交于点C,连接BD,若四边形OABC为平行四边形,则BDC的度数为_2、如图,在矩形中,F为中点,P是线段上一点,设,连结并将它绕点P顺时针旋转90得到线段,连结、,则在点P从点B向点C的运动过程中,有下面四个结论:当时,;点E到边的距离为m;直线一定经过点;的最小值为其中

4、结论正确的是_(填序号即可)3、如图,是由绕点O顺时针旋转30后得到的图形,若点D恰好落在AB上,且的度数为100,则的度数是_4、如图,已知,外心为,分别以,为腰向形外作等腰直角三角形与,连接,交于点,则的最小值是_5、如图,在O中,AB10,BC12,D是上一点,CD5,则AD的长为_三、解答题(5小题,每小题10分,共计50分)1、在正方形ABCD中,过点B作直线l,点E在直线l上,连接CE,DE,其中,过点C作于点F,交直线l于点H(1)当直线l在如图的位置时请直接写出与之间的数量关系_请直接写出线段BH,EH,CH之间的数量关系_(2)当直线l在如图的位置时,请写出线段BH,EH,C

5、H之间的数量关系并证明;(3)已知,在直线l旋转过程中当时,请直接写出EH的长2、如图,AC是O的直径,BC是O的弦,点P是O外一点,连接PB、AB,PBAC(1)求证:PB是O的切线;(2)连接OP,若OPBC,且OP8,O的半径为3,求BC的长3、如图,正方形ABCD的顶点A、B在x轴的负半轴上,顶点CD在第二象限将正方形ABCD绕点A按顺时针方向旋转,B、C、D的对应点分别为B1、C1、D1,且D1、C1、O三点在一条直线上记点D1的坐标是(m,n),C1的坐标是(p,q)(1)设DAD130,n2,求证:OD1的长度;(2)若DAD190,m,n满足m+n4,p2+q225,求p+q的

6、值4、如图,已知等边内接于O,D为的中点,连接DB,DC,过点C作AB的平行线,交BD的延长线于点E(1)求证:CE是O的切线;(2)若AB的长为6,求CE的长5、在平面直角坐标系xOy中,给出如下定义:若点P在图形M上,点Q在图形N上,称线段PQ长度的最小值为图形M,N的“近距离”,记为d(M,N),特别地,若图形M,N有公共点,规定d(M,N)0已知:如图,点A(,0),B(0,)(1)如果O的半径为2,那么d(A,O) ,d(B,O) (2)如果O的半径为r,且d(O,线段AB)=0,求r的取值范围;(3)如果C(m,0)是x轴上的动点,C的半径为1,使d(C,线段AB)1,直接写出m的

7、取值范围-参考答案-一、单选题1、B【分析】根据等腰三角形的性质,三线合一即可得,根据三角形切线的判定即可判断是的切线,进而可得C 与AB的位置关系【详解】解:连接,,点O为AB中点CO为C的半径,是的切线,C 与AB的位置关系是相切故选B【点睛】本题考查了三线合一,切线的判定,直线与圆的位置关系,掌握切线判定定理是解题的关键2、C【分析】先根据圆周角定理求出AOB的度数,再由等腰三角形的性质即可得出结论【详解】ACB=50,AOB=100,OA=OB,OAB=OBA= 40,故选:C【点睛】本题考查的是圆周角定理,即在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半3

8、、B【分析】利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算【详解】解:它的侧面展开图的面积2236(cm2)故选:B【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长4、B【分析】由题意易得,然后根据三角形外角的性质可求解【详解】解:由旋转的性质可得:,;故选B【点睛】本题主要考查旋转的性质及三角形外角的性质,熟练掌握旋转的性质及三角形外角的性质是解题的关键5、D【分析】首先连接OA,OB,由PA,PB为O的切线,根据切线的性质,即可得OAP=OBP=90,又由圆周

9、角定理,可求得AOB的度数,继而可求得答案【详解】解:连接OA,OB,PA,PB为O的切线,OAP=OBP=90,ACB=70,AOB=2P=140,P=360-OAP-OBP-AOB=40故选:D【点睛】此题考查了切线的性质与圆周角定理,注意掌握辅助线的作法和数形结合思想的应用6、B【详解】解:A是轴对称图形,不是中心对称图形,故不符合题意;B既是轴对称图形,又是中心对称图形,故符合题意;C不是轴对称图形,是中心对称图形,故不符合题意;D是轴对称图形,不是中心对称图形,故不符合题意故选:B【点睛】本题考查了中心对称图形与轴对称图形的概念,把一个图形绕某一点旋转180,如果旋转后的图形能够与原

10、来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合7、C【分析】连接,过点作于点,交于点,先由垂径定理求出的长,再根据勾股定理求出的长,进而得出的长即可【详解】解:连接,过点作于点,交于点,如图所示:则,的直径为,在中,即水的最大深度为,故选:C【点睛】本题考查了垂径定理、勾股定理等知识,解题的关键是根据题意作出辅助线,构造出直角三角形是解答此题的关键8、A【分析】连接,根据圆周角定理求出,根据切线的性质得到,根据

11、直角三角形的性质计算,得到答案【详解】解:连接, ,与圆相切于点,故选:A【点睛】本题考查的是切线的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键9、C【分析】先设半径为r,再根据弧长公式建立方程,解出r即可【详解】设半径为r,则周长为2r,120所对应的弧长为解得r=3故选C【点睛】本题考查弧长计算,牢记弧长公式是本题关键10、D【详解】解:不是轴对称图形,也不是中心对称图形,故本选项不符合题意;不是轴对称图形,是中心对称图形,故本选项不符合题意;是轴对称图形,不是中心对称图形,故本选项不符合题意;既是轴对称图形,又是中心对称图形,故本选项符合题意故选:D【点睛】本题考查了中

12、心对称图形与轴对称图形的概念,解题的关键是掌握轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合二、填空题1、【分析】先由切线的性质得到OBC=90,再由平行四边形的性质得到BO=BC,则BOC=BCO=45,由OD=OB,得到ODB=OBD,由ODB+OBD=BOC,即可得到ODB=OBD=22.5,即BDC=22.5【详解】解:BC是圆O的切线,OBC=90,四边形ABCO是平行四边形,AO=BC,又AO=BO,BO=BC,BOC=BCO=45,OD=OB,ODB=OBD,ODB+OBD=BOC,ODB=OBD=22.5,即BDC=

13、22.5,故答案为:22.5【点睛】本题主要考查了平行四边形的性质,切线的性质,等腰三角形的性质与判定,三角形外角的性质,熟知切线的性质是解题的关键2、【分析】当在点的右边时,得出即可判断;证明出即可判断;根据为等腰直角三角形,得出都是等腰直角三角形,得到即可判断;当时,有最小值,计算即可【详解】解:,为等腰直角三角形,当在点的左边时,当在点的右边时,故错误;过点作,在和中,根据旋转的性质得:,故正确;由中得知为等腰直角三角形,也是等腰直角三角形,过点,不管P在上怎么运动,得到都是等腰直角三角形,即直线一定经过点,故正确;是等腰直角三角形,当时,有最小值,为等腰直角三角形,由勾股定理:,故正确

14、;故答案是:【点睛】本题是四边形综合题,考查了矩形的性质,全等三角形的判定和性质,旋转的性质,勾股定理,等腰直角三角形,解题的关键是灵活运用这些性质进行推理3、35【分析】根据旋转的性质可得AODBOC30,AODO,再求出BOD,ADO,然后利用三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解【详解】解:COD是AOB绕点O顺时针旋转30后得到的图形,AODBOC30,AODO,AOC100,BOD10030240,ADOA(180AOD)(18030)75,由三角形的外角性质得,BADOBOD754035故答案为:35【点睛】本题考查了旋转的性质,等腰三角形的性质,三角形的一个

15、外角等于与它不相邻的两个内角的和的性质,熟记各性质并准确识图是解题的关键4、【分析】由与是等腰直角三角形,得到,根据全等三角形的性质得到,求得在以为直径的圆上,由的外心为,得到,如图,当时,的值最小,解直角三角形即可得到结论【详解】解:与是等腰直角三角形,在与中,在以为直径的圆上,的外心为,如图,当时,的值最小,则的最小值是,故答案为:【点睛】本题考查了三角形的外接圆与外心,全等三角形的判定和性质,等腰直角三角形的性质,正确的作出辅助线是解题的关键5、3【分析】过A作AEBC于E,过C作CFAD于F,根据圆周角定理可得ACB=B=D,AB=AC=10,再由等腰三角形的性质可知BE=CE=6,根

16、据相似三角形的判定证明ABECDF,由相似三角形的性质和勾股定理分别求得AE、DF、CF, AF即可求解【详解】解:过A作AEBC于E,过C作CFAD于F,则AEB=CFD=90, AB10,ACB=B=D,AB=AC=10,AEBC,BC=12,BE=CE=6, ,B=D,AEB=CFD=90,ABECDF,AB=10,CD=5,BE=6,AE=8,解得:DF=3,CF=4,在RtAFC中,AFC=90,AC=10,CF=4,则,AD=DF+AF=32,故答案为:32【点睛】本题考查圆周角定理、等腰三角形的性质、相似三角形的判定与性质、勾股定理,熟练掌握圆周角定理和相似三角形的判定与性质是解

17、答的关键三、解答题1、(1);(2);证明见解析;(3)或【分析】(1),根据CE=BC,四边形ABCD为正方形,可得BC=CD=CE,根据CFDE,得出CF平分ECD即可;,过点C作CGBE于G,根据BC=EC,得出ECG=BCG=,根据ECH=HCD=,可得CG=HG,根据勾股定理在RtGHC中,根据GE=,得出即可;(2),过点C作交BE于点M,得出,先证得出,可证是等腰直角三角形,可得即可;(3)或,根据,分两种情况,当ABE=90-15=75时,BC=CE,先证CDE为等边三角形,可求FEH=DEC=CEB=60-15=45,根据CFDE,得出DF=EF=1,FHE=180-HFE-

18、FEH=45,根据勾股定理HE=,当ABE=90+15=105,可得BC=CE得出CBE=CEB=15,可求FCE=,FEC=180-CFE-FCE=30,根据30直角三角形先证得出CF=,根据勾股定理EF=,再证FH=FE,得出EH=即可【详解】解:(1)CE=BC,四边形ABCD为正方形,BC=CD=CE,CFDE,CF平分ECD,ECH=HCD,故答案为:ECH=HCD;,过点C作CGBE于G,BC=EC,ECG=BCG=,ECH=HCD=,GCH=ECG+ECF=+,GHC=180-HGC+GCH=180-90-45=45,CG=HG,在RtGHC中, ,GE=, GH=GE+EH=,

19、故答案是:;(2), 证明:过点C作交BE于点M,则,是等腰直角三角形, (3)或,分两种情况,当ABE=90-15=75时,BC=CE,CBE=CEB=15,BCE=180-CBE-CEB=180-15-15=150,DCE=BCE-BCD=150=90=60,CE=CD,CDE为等边三角形,DE=CD=AB=2,DEC=60,FEH=DEC=CEB=60-15=45,CFDE,DF=EF=1,FHE=180-HFE-FEH=45,EF=HF=1,HE=,当ABE=90+15=105,BC=CE,CBE=CEB=15,BCE=180-CBE-CEB=150,DCE=360-DCB-BCE=1

20、20,CE=BC=CD,CHDE,FCE=, FEC=180-CFE-FCE=30,CF=,EF=,HEF=CEB+CEF=15+30=45,FHE=180-HFE-FEH=45=FEH,FH=FE,EH=,或【点睛】本题考查正方形性质,图形旋转性质,勾股定理,等边三角形,等腰直角三角形性质,角平分线,线段和差,掌握正方形性质,图形旋转性质,勾股定理,等边三角形,等腰直角三角形性质,角平分线,线段和差是解题关键2、(1)见解析(2)【分析】(1)连接,由圆周角定理得出,得出,再由,得出,证出,即可得出结论;(2)证明,得出对应边成比例,即可求出的长(1)证明:连接,如图所示:是的直径,即,是的

21、切线;(2)解:的半径为,又,即,【点睛】本题考查了切线的判定、圆周角定理、平行线的性质、相似三角形的判定与性质;解题的关键是熟练掌握圆周角定理、切线的判定3、(1)4;(2)-1或-7【分析】(1)如图,且三点在一条直线上的情况,连接,过点向作垂线交点为,在直角三角形中,可求的长;(2)如图,过点向作垂线交点为,过点作轴垂线交于点,作交点为;由,知,点G坐标为,得,由知的值,从而得到的值【详解】解:(1)DAD130且D1、C1、O三点在一条直线上如图所示,连接,过点向作垂线交点为(2)如图过点向作垂线交点为,过点作轴垂线交于点,作交点为,在和中点横坐标可表示为p+q=-7或-1【点睛】本题

22、考查了锐角三角函数值,三角形全等,图形旋转的性质等知识解题的关键与难点是找出线段之间的关系4、(1)见解析;(2)3【分析】(1)由题意连接OC,OB,由等边三角形的性质可得ABC=BCE=60,求出OCB=30,则OCE=90,结论得证;(2)根据题意由条件可得DBC=30,BEC=90,进而即可求出CE=BC3【详解】解:(1)证明:如图连接OC、OB是等边三角形 又 与O相切; (2)四边形ABCD是O的内接四边形,D为的中点, 【点睛】本题主要考查等边三角形的性质、圆周角定理、圆内接四边形的性质、切线的判定以及直角三角形的性质等知识解题的关键是正确作出辅助线,利用圆的性质进行求解5、(

23、1)0,;(2);(3)【分析】(1)根据新定义,即可求解;(2)过点O作ODAB于点D,根据三角形的面积,可得,再由d(O,线段AB)=0,可得当O的半径等于OD时最小,当O的半径等于OB时最大,即可求解;(3)过点C作CNAB于点N ,利用锐角三角函数,可得OAB=60,然后分三种情况:当点C在点A的右侧时,当点C与点A重合时,当点C在点A的左侧时,即可求解【详解】解:(1)O的半径为2,A(,0),B(0,),点A在O上,点B在O外,d(A,O),d(B,O);(2)过点O作ODAB于点D,点A(,0),B(0,) , , , ,d(O,线段AB)=0,当O的半径等于OD时最小,当O的半径等于OB时最大,r的取值范围是,(3)如图,过点C作CNAB于点N ,点A(,0),B(0,) , ,OAB=60,C(m,0),当点C在点A的右侧时, , , ,d(C,线段AB)1,C的半径为1, ,解得: ,当点C与点A重合时, ,此时d(C,线段AB)=0,当点C在点A的左侧时, , , ,解得: ,【点睛】本题主要考查了点与圆的位置关系,点与直线的位置关系,理解新定义,熟练掌握点与圆的位置关系,点与直线的位置关系是解题的关键

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁