《2022年最新人教版八年级数学下册第十九章-一次函数课时练习试卷(含答案详解).docx》由会员分享,可在线阅读,更多相关《2022年最新人教版八年级数学下册第十九章-一次函数课时练习试卷(含答案详解).docx(26页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、人教版八年级数学下册第十九章-一次函数课时练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,图中的函数图象描述了甲乙两人越野登山比赛(x表示甲从起点出发所行的时间,表示甲的路程,表示乙的路程)下列
2、4个说法:越野登山比赛的全程为1000米;甲比乙晚出发40分钟;甲在途中休息了10分钟;乙追上甲时,乙跑了750米其中正确的说法有( )个A1B2C3D42、关于一次函数y2x+3,下列结论正确的是()A图象与x轴的交点为(,0)B图象经过一、二、三象限Cy随x的增大而增大D图象过点(1,1)3、函数的图象如下图所示:其中、为常数由学习函数的经验,可以推断常数、的值满足( )A,B,C,D,4、火车匀速通过隧道时,火车在隧道内的长度y(米)与火车行驶时间x(秒)之间的关系用图象描述如图所示,有下列结论:火车的速度为30米/秒;火车的长度为120米;火车整体都在隧道内的时间为35秒;隧道长度为1
3、200米其中正确的结论是( )ABCD5、一次函数yx2的图象不经过( )A第一象限B第二象限C第三象限D第四象限6、直线yax+a与直线yax在同一坐标系中的大致图象可能是()ABCD7、变量,有如下关系:;其中是的函数的是( )ABCD8、下列函数中,一次函数是( )Ay4x5Byx(2x3)Cyax2bxcDy9、如图,直线l是一次函数的图象,下列说法中,错误的是( )A,B若点(1,)和点(2,)是直线l上的点,则C若点(2,0)在直线l上,则关于x的方程的解为D将直线l向下平移b个单位长度后,所得直线的解析式为10、若直线ykx+b经过第一、二、三象限,则函数ybxk的大致图象是()
4、ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、一个长方体的底面是一个边长为10cm的正方形,如果高为h(cm)时,体积为V(cm3),则V与h的关系为_;2、在一条笔直的公路上有A、B两地,甲骑自行车从A地到B地;乙骑自行车从B地到A地,到达A地后立即按原路返回,如图是甲、乙两人离B地的距离y(km)与行驶时间x(h)之间的函数图象,若两人之间保持的距离不超过4km时,能够用无线对讲机保持联系,则甲、乙两人总共有_h可以用无线对讲机保持联系3、在平面直角坐标系中,点A(1,4),B(4,2),C(m,m)当以点A、B、C为顶点构成的ABC周长最小时,m的值为_
5、4、如图所示,直线与两坐标轴分别交于、两点,点是的中点,、分别是直线、轴上的动点,当周长最小时,点的坐标为_5、一次函数y=(m-1)x+2的函数值y随x的增大而增大,则m的取值范围是_三、解答题(5小题,每小题10分,共计50分)1、疫情期间,乐清市某医药公司计划购进N95型和一次性成人口罩两种款式若购进N95型10箱和一次性成人口罩20箱,需要32500元;若购进N95型30箱和一次性成人口罩40箱,需要87500元 (1)N95型和一次性成人口罩每箱进价分别为多少元? (2)由于疫情严峻急需口罩,老板决定再次购进N95型和一次性成人口罩共80箱,口罩工厂对两种产品进行了价格调整,N95型
6、的每箱进价比第一次购进时提高了10%,一次性成人口罩的每箱进价按第一次进价的八折;如果药店此次用于购进N95型和一次性成人口罩两种型号的总费用不超过115000元,则最多可购进N95型多少箱? (3)若销售一箱N95型,可获利500元;销售一箱一次性成人口罩,可获利100元,在(2)的条件下,如何进货可使再次购进的口罩获得最大的利润?最大的利润是多少?2、已知函数y2|12x-1|,当x2时,y12x+3则:(1)当x2时,y ;根据x2时y的表达式,补全表格、如图的函数图象x21012y0.51.5(2)观察(1)的图象,该函数有最 值(填“大”或“小”),是 ,你发现该函数还具有的性质是
7、(写出一条即可);(3)在如图的平面直角坐标系中,画出y16x13的图象,并指出2|12x1|16x13时,x的取值范围3、已知:A、B都是x轴上的点,点A的坐标是(3,0),且线段AB的长等于4,点C的坐标是(0,2)(1)直接写出点B的坐标(2)求直线BC的函数表达式4、如图,函数y2x和y23x4的图象相交于点A.(1)求点A的坐标;(2)根据图象,直接写出不等式2x23x4的解集5、已知:如图一次函数y1=kx-2与x轴相交于点B-2,0,y2=x+b与x轴相交于点C4,0,这两个函数图象相交于点A(1)求出k,b的值和点A的坐标;(2)连接OA,直线y2=x+b上是否存在一点P,使S
8、OCP=13SOAC如果存在,求出点P的坐标;-参考答案-一、单选题1、C【解析】【分析】根据终点距离起点1000米即可判断;根据甲、乙图像的起点可以判断;根据AB段为甲休息的时间即可判断;设乙需要t分钟追上甲,求出t即可判断【详解】解:由图像可知,从起点到终点的距离为1000米,故正确;根据图像可知甲出发40分钟之后,乙才出发,故乙比甲晚出发40分钟,故错误;在AB段时,甲的路程没有增加,即此时甲在休息,休息的时间为40-30=10分钟,故正确;乙从起点到终点的时间为10分钟,乙的速度为100010=100米/分钟,设乙需要t分钟追上甲,解得t=7.5,乙追上甲时,乙跑了7.5100=750
9、米,故正确;故选C【点睛】本题主要考查了从函数图像获取信息,解题的关键在于能够准确读懂函数图像2、A【解析】【分析】利用一次函数图象上点的坐标特征,可判断出选项A符合题意;利用一次函数图象与系数的关系,可判断出选项B不符合题意;利用一次函数的性质,可判断出选项C不符合题意;利用一次函数图象上点的坐标特征,可判断出选项D不符合题意【详解】解:A当y0时,2x+30,解得:x,一次函数y2x+3的图象与x轴的交点为(,0),选项A符合题意;Bk20,b30,一次函数y2x+3的图象经过第一、二、四象限,选项B不符合题意;Ck20,y随x的增大而减小,选项C不符合题意;D当x1时,y21+31,一次
10、函数y2x+3的图象过点(1,1),选项D不符合题意故选:A【点睛】本题主要是考查了一次函数图象上点的坐标特征、一次函数的性质,熟练掌握利用函数表达式求解点的坐标,利用一次函数的性质,求解增减性和函数所过象限,是解决本题的关键3、B【解析】【分析】由题意根据图象可知,当x0时,y0,可知a0;x=b时,函数值不存在,则b0.【详解】解:由图象可知,当x0时,y0,ax0,a0;x=b时,函数值不存在,即xb,结合图象可以知道函数的x取不到的值大概是在1的位置,b0故选:B【点睛】本题考查函数的图象性质,能够通过已学的反比例函数图象确定b的取值是解题的关键4、D【解析】【分析】根据函数的图象即可
11、确定在BC段,所用的时间是5秒,路程是150米,则速度是30米/秒,进而即可确定其它答案【详解】解:在BC段,所用的时间是5秒,路程是150米,则速度是30米/秒故正确;火车的长度是150米,故错误;整个火车都在隧道内的时间是:45-5-5=35秒,故正确;隧道长是:4530-150=1200(米),故正确故选:D【点睛】本题主要考查了用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决5、A【解析】【分析】因为k10,b20,根据一次函数ykx+b(k0)的性质得到图象经过第二、四象限,图象与y轴的交点在x轴下方,于是可判断一次函
12、数yx2的图象不经过第一象限【详解】解:一次函数yx2中k10,图象经过第二、四象限;又b20,一次函数的图象与y轴的交点在x轴下方,即函数图象还经过第三象限,一次函数yx2的图象不经过第一象限故选:A【点睛】本题主要考查一次函数图象在坐标平面内的位置与k、b的关系解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系;k0时,直线必经过一、三象限;k0时,直线必经过二、四象限;b0时,直线与y轴正半轴相交;b=0时,直线过原点;b0时,直线与y轴负半轴相交6、D【解析】【分析】若y=ax过第一、三象限,则a0,所以y=-ax+a过第一、二、四象限,可对A、B进行判断;若y=a
13、x过第二、四象限,则a0,-a0,所以y=-ax+a过第一、三、四象限,与y轴的交点在y轴负半轴,则可对C、D进行判断【详解】解:A、y=ax过第一、三象限,则a0,所以y=-ax+a过第一、二、四象限,所以A选项不符合题意;B、y=ax过第一、三象限,则a0,所以y=-ax+a过第一、二、四象限,所以B选项不符合题意;C、y=ax过第二、四象限,则a0,-a0,所以y=-ax+a过第一、三、四象限,与y轴的交点在y轴负半轴,所以C选项不符合题意;D、y=ax过第二、四象限,则a0,-a0,所以y=-ax+a过第一、三、四象限,与y轴的交点在y轴负半轴,所以D选项符合题意;故选D【点睛】本题考
14、查了一次函数的图象:一次函数y=kx+b(k0)的图象为一条直线,当k0,图象过第一、三象限;当k0,图象过第二、四象限;直线与y轴的交点坐标为(0,b)7、B【解析】【分析】根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,据此即可确定函数的个数即可【详解】解:满足对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数;满足对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数;满足对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数;,当时,则y不是x的函数;综上,是函数的有故选:B【点睛】本题主要考查了函数的定义在一个变化过程中,有两个
15、变量x、y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数8、A【解析】【分析】由题意直接根据一次函数的定义逐个进行分析判断即可【详解】解:A. y4x5是一次函数,故本选项符合题意;B. yx(2x3)=2x2-3x是二次函数,不是一次函数,故本选项不符合题意;C. yax2bxc,当a0时,y=ax2+bx+c是二次函数,不是一次函数,故本选项不符合题意;D. y是反比例函数,故本选项不符合题意;故选:A.【点睛】本题考查一次函数的定义,熟练掌握一次函数的定义是解答此题的关键,注意:形如y=kx+b(k、b为常数,k0)的函数叫一次函数9、B【解析】【分析】根据一次函数图象
16、的性质和平移的规律逐项分析即可【详解】解:A.由图象可知,故正确,不符合题意;B. -11【解析】【分析】由一次函数的性质可得m-1为正,从而可求得m的取值范围【详解】由题意知,m-10则m1故答案为:m1【点睛】本题考查了一次函数的图象与性质,熟悉一次函数的图象与性质是关键三、解答题1、(1)N95型和一次性成人口罩每箱进价分别为2250元、500元;(2)最多可购进N95型40箱;(3)采购N95型40个,一次性成人口罩40个可获得最利润为24000元【解析】【分析】(1)设N95型每箱进价x元,一次性成人口罩每箱进价y元,依题意得10x+20y=32500,30x+40y=87500,联
17、立求解即可; (2)设购进N95型a箱,依题意得:2250(1+10%)a+50080%(80-a)115000,求出a的范围,结合a为正整数可得a的最大值; (3)设购进的口罩获得最大的利润为w,依题意得:w500a+100(80-a),然后对其进行化简,结合一次函数的性质进行解答【详解】(1)解:设N95型每箱进价x元,一次性成人口罩每箱进价y元,依题意得: 10x+20y=3250030x+40y=87500 ,解得: x=2250y=500 ,答:N95型和一次性成人口罩每箱进价分别为2250元、500元(2)解:设购进N95型a箱,则一次性成人口罩为(80a)套,依题意得: 2250
18、(1+10%)a+50080%(80a)115000 解得:a40a取正整数,0a40a的最大值为40答:最多可购进N95型40箱(3)解:设购进的口罩获得最大的利润为w, 则依题意得:w500a+100(80a)400a+8000,又0a40,w随a的增大而增大,当a40时,W40040+800024000元即采购N95型40个,一次性成人口罩40个可获得最利润为24000元答:最大利润为24000元【点睛】本题考查了二元一次方程组的应用、一元一次不等式组的应用以及一次函数的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式组;
19、(3)根据各数量之间的关系,找出w关于a的函数关系式2、(1)12x+1,表格及图像见详解;(2)大,2,关于直线x=2对称;(3)-2x4【解析】【分析】(1)根据绝对值的性质化简得到y=2-|12x-1|=2-(1-12x)=12x+1;根据解析式补全表格,然后根据两点补全图象;(2)根据图象即可求得;(3)在同一平面直角坐标系中,画出y=16x+13的图象,根据图象即可求得【详解】解:(1)当x16x+13时,x的取值范围-2x4,【点睛】本题考查了一次函数的图象,一次函数与一元一次不等式的关系,一次函数的性质,数形结合是解题的关键3、(1)B(7,0)或(1,0);(2)y=-27x+
20、2或y=2x+2【解析】【分析】(1)根据A的坐标和AB=4,分B在A点的左边和右边两种情况求得B的坐标;(2)根据待定系数法求得即可【详解】解:(1)A,B都是x轴上的点,点A的坐标是(3,0),且线段AB的长等于4,B(7,0)或(-1,0);(2)设直线BC的解析式为y=kx+b,直线经过C(0,2),直线BC的解析式为y=kx+2,当B(7,0)时,0=7k+2,解得k=-27,当B(-1,0)时,0=-k+2,解得k=2,直线BC的函数表达式为y=-27x+2或y=2x+2【点睛】本题考查了待定系数法求一次函数的解析式,解题的关键是根据题意求得B的两个坐标4、 (1) (32,3);
21、(2) x32.【解析】【分析】(1)联立两直线解析式,解方程组即可得到点A的坐标;(2)根据图形,找出点A右边的部分的x的取值范围即可【详解】(1)由题意得y=2x,y=-23x+4,解得x=32,y=3.点A的坐标为(32,3);(2)由图象得不等式2x23x4的解集为x32.【点睛】本题考查了一次函数图象交点坐标与二元一次方程组解的关系,以及利用函数图象解一元一次不等式,求不等式解集的关键在于准确识图,确定出两函数图象的对应的函数值的大小5、(1)k=-1,b=-4,A(1,-3);(2)P点的坐标为(5,1)或(3,-1)【解析】【分析】(1)根据待定系数法即可求得k、b的值,然后解析
22、式联立,解方程组即可求得A的坐标;(2)求得SOCP=2,利用三角形面积即可求得P的纵坐标为1,代入y=x-4即可求得P的坐标【详解】解:(1)一次函数y1=kx-2与x轴相交于点B(-2,0),y2=x+b与x轴相交于点C(4,0),-2k-2=0,4+b=0,解得k=-1,b=-4,解y=-x-2y=x-4得x=1y=-3,A(1,-3);(2)连接OA,如图所示:A(1,-3),C(4,0),OC=4,SAOC=1243=6,SOCP=13SOAC,SOCP=2,124|yP|=2,yP=1,把y=1代入y=x-4得,1=x-4,解得x=5,把y=-1代入y=x-4得,-1=x-4,解得x=3,P点的坐标为(5,1)或(3,-1)【点睛】本题考查了两条直线的交点问题,用待定系数法求一次函数的解析式,一次函数图象上点的坐标特征,三角形的面积,数形结合是解此题的关键