《2021-2022学年度沪教版(上海)七年级数学第二学期第十二章实数专题练习试卷(精选).docx》由会员分享,可在线阅读,更多相关《2021-2022学年度沪教版(上海)七年级数学第二学期第十二章实数专题练习试卷(精选).docx(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、沪教版(上海)七年级数学第二学期第十二章实数专题练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列实数比较大小正确的是( )ABCD2、下列各数中,最小的数是( )A0BCD33、在实数,0.101
2、0010001(相邻两个1中间依次多1个0)中,无理数有( )A2个B3个C4个D5个4、若与互为相反数,则a、b的值为( )ABCD5、的值等于( )AB2CD26、64的立方根为( )A2B4C8D27、下列运算正确的是()ABCD8、的算术平方根是( )ABCD9、三个实数,2,之间的大小关系()A2B2C2D210、估计的值应该在( )A1和2之间B2和3之间C3和4之间D4和5之间第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、的整数部分是_2、的平方根是_3、引入新数i,新数i满足分配律、结合律、交换律,已知,则_4、给定二元数对(p,q),其中或1,或1三
3、种转换器A,B,C对(p,q)的转换规则如下:(1)在图1所示的“ABC”组合转换器中,若输入,则输出结果为_;(2)在图2所示的“C”组合转换器中,若当输入和时,输出结果均为0,则该组合转换器为“_C_”(写出一种组合即可)5、对于实数a,b,且(ab),我们用符号mina,b表示a,b两数中较小的数,例如:min(1,2)2(1)min(,)_;(2)已知min(,a)a,min(,b),若a和b为两个连续正整数,则a+b_三、解答题(10小题,每小题5分,共计50分)1、计算:2、已知一个正数x的平方根是a+3和2a-15,求a和x的值3、有理数a,b如果满足,那么我们定义a,b为一组团
4、结数对,记为a,b例如:和,因为,所以,则称和为一组团结数对,记为根据以上定义完成下列各题:(1)找出2和2,1和3,2和这三组数中的团结数对,记为 ;(2)若5,x成立,则x的值为 ;(3)若a,b成立,b为按一定规律排列成1,3,9,27,81,243,这列数中的一个,且b与b左右两个相邻数的和是567,求a的值4、求下列各式中的值:(1); (2)5、解方程,求x的值(1) (2)6、解方程:(1)4(x1)236;(2)8x3277、求下列各数的平方根:(1)121 (2) (3)(-13)2 (4) 8、求下列各数的算术平方根:(1)0.64 (2)9、任何实数a,可用a表示不超过a
5、的最大整数,如4=4,=1现对72进行如下操作:72第一次=8,第二次=2,第三次=1,这样对72只需进行3次操作变为1(1)对10进行1次操作后变为_,对200进行3次作后变为_;(2)对实数m恰进行2次操作后变成1,则m最小可以取到_;(3)若正整数m进行3次操作后变为1,求m的最大值10、把下列各数分别填入相应的集合里,0,0.1010010001(每两个1之间依次多一个0)(1)整数集合: (2)正数集合: (3)无理数集合: -参考答案-一、单选题1、D【分析】根据有理数比较大小的法则对各选项进行比较即可【详解】解:A、1-4,故本选项错误;B、-1000-0.001,故本选项错误;
6、C、,故本选项错误;D、,故本选项正确;故选:D【点睛】本题考查的是实数的大小比较,即正数都大于0;负数都小于0;正数大于一切负数; 两个负数,绝对值大的其值反而小2、C【分析】有理数大小比较的法则:正数都大于0;负数都小于0;正数大于一切负数;两个负数,绝对值大的其值反而小,据此判断即可【详解】解:,所给的各数中,最小的数是故选:C【点睛】本题主要考查了有理数大小比较的方法,解题的关键是要明确:正数都大于0;负数都小于0;正数大于一切负数;两个负数,绝对值大的其值反而小3、D【分析】无理数就是无限不循环小数理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称即有限小数和无限
7、循环小数是有理数,而无限不循环小数是无理数由此即可判定选择项【详解】解:是有理数,是无限循环小数,是有理数,是分数,是有理数,0.1010010001(相邻两个1中间依次多1个0)是无理数,共个,故选:D【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:,2等;开方开不尽的数;以及像0.1010010001,等有这样规律的数4、D【分析】首先根据绝对值的性质和二次根式的性质得到,然后解方程组求解即可【详解】解:与互为相反数,+0,得:,得:,解得:,将代入得:,解得:故选:D【点睛】此题考查了绝对值的性质,二次根式的性质,相反数的性质以及解二元一次方程组等知识,解题的关键是根据
8、题意得出关于a、b的方程组并求解5、D【分析】由于表示4的算术平方根,由此即可得到结果【详解】解:4的算术平方根为2,的值为2故选D【点睛】此题主要考查了算术平方根的定义,算术平方根的概念易与平方根的概念混淆而导致错误弄清概念是解决本题的关键6、B【分析】根据立方根的定义进行计算即可【详解】解:43=64,实数64的立方根是,故选:B【点睛】本题考查立方根,理解立方根的定义是正确解答的关键7、B【分析】依据算术平方根的性质、立方根的性质、乘方法则、绝对值的性质进行化简即可【详解】A、,故A错误;B、,故B正确;C,故C错误;D|-2|-2,故D错误故选:B【点睛】本题主要考查的是算术平方根的性
9、质、立方根的性质、乘方运算法则、绝对值的性质,熟练掌握相关知识是解题的关键8、A【分析】根据算术平方根的定义即可完成【详解】 的算术平方根是 即 故选:A【点睛】本题考查了算术平方根的计算,掌握算术平方根的定义是关键9、A【分析】,根据被开方数的大小即判断这三个数的大小关系【详解】2故选A【点睛】本题考查了实数大小比较,掌握无理数的估算是解题的关键10、C【分析】根据252936估算出的大小,然后可求得的范围【详解】解:252936,即56二、填空题1、3【分析】先估算的近似值,然后进行计算即可【详解】解:,的整数部分是3,故答案为3【点睛】本题考查了估算无理数的大小,解题的关键是熟练掌握求一
10、个数的平方2、【分析】先求出,再根据平方根性质,即可求解【详解】解:,的平方根是 故答案为:【点睛】本题主要考查了平方根的性质,熟练掌握正数有两个平方根,且互为相反数;0的平方根为0;负数没有平方根是解题的关键3、2【分析】先根据平方差公式化简,再把代入计算即可【详解】解:故答案为2【点睛】本题考查了新定义运算及平方差公式,熟练掌握平方差公式是解答本题的关键.4、1 A A 【分析】(1)利用转换器C的规则即可求出答案(2)利用转换器A、B、C的规则,写出一组即可【详解】(1)解:利用转换器C的规则可得:输出结果为1(2)解:当输入时,若对应A,此时经过A、C输出结果为(1,0),对应A,输出
11、结果恰好为0当输入时,若对应A,此时经过A、C输出结果为(0,1),对应A,输出结果恰好为0故答案为:1;A;A【点睛】本题主要是新定义题目,利用题目所给规则,进行分析判断,即可解答出该题目5、 【分析】(1)直接根据mina,b表示a,b两数中较小的数,表示出(,)较小的数即可;(2)根据mina,b表示a,b两数中较小的数,得出,根据a和b为两个连续正整数,可得结果【详解】解:(1),min(,),故答案为:;(2)min(,a)a,min(,b),a和b为两个连续正整数,故答案为:【点睛】本题考查了实数的大小比较,无理数的估算,熟练掌握实数的大小比较方法以及无理数的估算方法是解本题的关键
12、三、解答题1、【分析】根据求一个数的算术平方根,负整数指数幂,0次幂进行计算即可【详解】原式= =.【点睛】本题考查了求一个数的算术平方根,负整数指数幂,0次幂,正确的计算是解题的关键2、4,49【分析】根据一个正数有2个平方根,它们互为相反数,再列方程,解方程即可得到答案.【详解】解:正数有2个平方根,它们互为相反数,解得,所以【点睛】本题考查的是平方根的含义,掌握“一个正数有两个平方根且两个平方根互为相反数”是解本题的关键.3、(1)2,2,2,(2)(3)【解析】(1)和2是一组团结数,即为,和3不是一组团结数,和是一组团结数,即为,故答案为:,;(2)若5,x成立,则故答案为:;(3)
13、设b左面相邻的数为x,b为3x,b右面相邻的数为9x由题意可得 解得 x81 所以 b243 由于a,b成立,则a243243a,解得【点睛】本题考查新定义计算,实际有理数的混合运算、一元一次方程等知识,是基础考点,掌握相关知识是解题关键4、(1);(2)【分析】(1)把原方程化为,再利用立方根的含义解方程即可;(2)直接利用平方根的含义把原方程化为或,再解两个一次方程即可.【详解】解:(1) 解得: (2)或 解得:【点睛】本题考查的是利用立方根的含义与平方根的含义解方程,掌握“立方根与平方根的含义”是解本题的关键.5、(1)或 ;(2)x【分析】(1)方程变形后,利用平方根定义开方即可求出
14、解;(2)把x1可做一个整体求出其立方根,进而求出x的值【详解】解:(1), ,或 ;(2)8(x1)327,(x1)3,x1,x【点睛】本题考查了平方根、立方根熟练掌握平方根、立方根的定义和性质是解题的关键6、(1)x4或2;(2)x【分析】(1)先变形为(x1)29,然后求9的平方根即可;(2)先变形为x3,再利用立方根的定义得到答案【详解】解:(1)方程两边除以4得,(x1)29,x13,x4或2;(2)方程两边除以8得,x3,所以x【点睛】本题考查了平方根、立方根的运算,熟练掌握运算法则是解本题的关键7、 (1)11; (2) ; (3)13; (4)8【分析】(1)直接根据平方根的定
15、义求解;(2)把带分数化成假分数,再根据平方根的定义求解;(3)(4)先化简,再根据平方根的定义求解【详解】含有乘方运算先求出它的幂,再开平方(1)因为(11)2=121,所以121的平方根是11;(2),因为, 所以的平方根是;(3)(-13)2=169,因为(13)2=169,所以(-13)2的平方根是13;(4)-(-4)3=64,因为(8)2=64,所以-(-4)3的平方根是8【点睛】本题考查了平方根,开方运算是解题关键,注意正数的平方根有两个,它们互为相反数8、 (1) 0.8; (2) 【分析】根据算术平方根的定义求解即可【详解】解:(1)因为082=0.64,所以0.64的算术平
16、方根是0.8,即=0.8(2)因为,所以的算术平方根是,即【点睛】本题考查了算术平方根,熟练掌握算术平方根的定义是解答本题的关键, 正数有一个正的算术平方根,0的平方根是0,负数没有算术平方根9、(1)3;1;(2);(3)的最大值为255【详解】解:(1),对10进行1次操作后变为3;同理可得,同理可得,同理可得,对200进行3次作后变为1,故答案为:3;1;(2)设m进行第一次操作后的数为x,要经过两次操作故答案为:(3)设m经过第一次操作后的数为n,经过第二次操作后的数为x,要经过3次操作,故是整数的最大值为255【点睛】本题考查取整函数及无理数的估计,正确理解取整含义是求解本题的关键10、(1)整数集合:;(2)正数集合:;(3)无理数集合:【分析】根据实数分类解题,实数分为有理数与无理数,无限不循环小数和开方不能开尽的数是无理数,整数和分数统称为有理数,整数包含正整数、0、负整数, (1)根据整数的分类即可得;(2)根据正数的分类即可得;(3)根据无理数的分类即可得【详解】解:+5是正整数,是无理数, 0是整数,-3.14是正分数,是正分数,-12是负整数,是负无理数,是正整数,(每两个1之间依次多一个0)是无理数;故(1)整数集合:;(2)正数集合:;(3)无理数集合:【点睛】本题考查实数的分类、有理数的分类等知识,掌握相关数的分类是解题关键