《2021-2022学年度北师大版八年级数学下册第六章平行四边形同步测试练习题(精选).docx》由会员分享,可在线阅读,更多相关《2021-2022学年度北师大版八年级数学下册第六章平行四边形同步测试练习题(精选).docx(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、北师大版八年级数学下册第六章平行四边形同步测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,一张含有80的三角形纸片,剪去这个80角后,得到一个四边形,则1+2的度数是( )A200B240C26
2、0D3002、一个正多边形的每个外角都等于45,则这个多边形的边数和对角线的条数分别是( )A8,20B10,35C6,9D5,53、如图,在平面直角坐标系中,平行四边形OABC的顶点A在x轴上,顶点B的坐标为(8,6).若直线l经过点(2,0),且直线l将平行四边形OABC分割成面积相等的两部分,则直线l对应的函数解析式是( )Ayx2By3x6CD4、如图,ABC以点O为旋转中心,旋转180后得到ED是ABC的中位线,经旋转后为线段已知,则BC的值是( )A1B2C4D55、已知一个正多边形的一个外角为36,则这个正多边形的内角和是( )A360B900C1440D18006、如图,已知正
3、方形ABCD中,G、P分别是DC、BC上的点,E、F分别是AP、GP的中点,当P在BC上从B向C移动而G不动时,下列结论成立的是( )A线段EF的长逐渐增大B线段EF的长逐渐减小C线段EF的长不改变D线段EF的长不能确定7、在平行四边形ABCD中,A30,那么B与A的度数之比为( )A4:1B5:1C6:1D7:18、如图,平行四边形ABCD的周长为36,对角线AC,BD相交于点O,点E是CD的中点,BD12,则DOE的周长是( )A12B15C18D249、如图所示,ABCD,ADBC,则图中的全等三角形共有( )A1对B2对C3对D4对10、若一个多边形的外角和与它的内角和相等,则这个多边
4、形是( )A三角形B四边形C五边形D六边形第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、正多边形的一个外角是45,则它是正_边形2、如图,在中,为上的两个动点,且,则的最小值是_3、点D、E分别是ABC边AB、AC的中点,已知BC12,则DE_4、一个多边形的内角和是它的外角和的两倍,则这个多边形的边数为 _5、已知:ABC中,点D、E、F分别是ABC三边的中点,如果ABC的周长是12cm,面积是16 cm2,那么DEF的周长是_三、解答题(5小题,每小题10分,共计50分)1、如图,在中,对角线AC、BD交于点O,AB=10,AD=8,ACBC,求(1)的面积;(2
5、)AOD的周长2、证明:n边形的内角和为(n-2)180(n3)3、如图,在平行四边形ABCD中,点E、F分别在AD、BC上,且AECF求证:BE/DF4、已知:如图,在中,求证:互相平分5、如图在平面直角坐标系中,点A(-2,0),B(2,3),C(0,4)(1)判断ABC的形状,并说明理由;(2)点D为平面直角坐标系中的点,以A、B、C、D为顶点的四边形为平行四边形,写出所有满足条件的点D的坐标-参考答案-一、单选题1、C【分析】三角形纸片中,剪去其中一个80的角后变成四边形,则根据多边形的内角和等于360度即可求得1+2的度数【详解】解:根据三角形的内角和定理得:四边形除去1,2后的两角
6、的度数为180-80=100,则根据四边形的内角和定理得:1+2=360-100=260故选:C【点睛】本题主要考查四边形的内角和,解题的关键是掌握四边形的内角和为360及三角形的内角和为1802、A【分析】利用多边形的外角和是360度,正多边形的每个外角都是45,求出这个多边形的边数,再根据一个多边形有条对角线,即可算出有多少条对角线【详解】解:正多边形的每个外角都等于45,36045=8,这个正多边形是正8边形,=20(条),这个正多边形的对角线是20条故选:A【点睛】本题主要考查的是多边的外角和,多边形的对角线及正多边形的概念和性质,任意多边形的外角和都是360,和边数无关正多边形的每个
7、外角都相等任何多边形的对角线条数为条3、C【分析】根据直线l将平行四边形OABC分割成面积相等的两部分,可得直线l过OB的中点,又根据中点公式可得OB的中点为,然后设直线l的解析式为,将点(2,0), 代入,即可求解【详解】解:直线l将平行四边形OABC分割成面积相等的两部分,直线l过平行四边形的对称中心,即过OB的中点,顶点B的坐标为(8,6), ,即,设直线l的解析式为,将点(2,0), 代入,得:,解得:,直线l的解析式为,故选:C【点睛】本题主要考查了求一次函数解析式,平行四边形的性质,明确题意,得到直线l过平行四边形的对称中心是解题的关键4、C【分析】先根据旋转的性质可得ED ED2
8、,再根据三角形的中位线定理求解即可【详解】解:ABC以点O为旋转中心,旋转180后得到ABC,ED是ABC的中位线,经旋转后为线段ED,EDED2,BC2ED4,故选C【点睛】本题考查旋转的性质、三角形的中位线定理,掌握旋转的性质是解题的关键5、C【分析】由正多边形的外角为36,可求出这个多边形的边数,再根据多边形内角和公式(n2)180,计算该正多边形的内角和.【详解】解:一个正多边形的外角等于36,这个多边形的边数为36036=10,这个多边形的内角和=(102)180=1440,故选:C.【点睛】本题考查多边形的外角和、内角和,理解和掌握多边形的外角和、内角和的计算方法是解决问题的关键.
9、6、C【分析】连接AG,根据三角形中位线定理可得EF= AG,因此线段EF的长不变【详解】解:如图,连接AG,E、F分别是AP、GP的中点, EF为APG的中位线,EF= AG,为定值线段EF的长不改变故选C【点睛】本题考查了三角形的中位线定理,只要三角形的边AG不变,则对应的中位线的长度就不变7、B【分析】根据平行四边形的性质先求出B的度数,即可得到答案【详解】解:四边形ABCD是平行四边形,ADBC,B=180-A=150,B:A=5:1,故选B【点睛】本题主要考查了平行四边形的性质,解题的关键在于能够熟练掌握平行四边形邻角互补8、B【分析】根据平行四边形的对边相等和对角线互相平分可得,O
10、BOD,又因为E点是CD的中点,可得OE是BCD的中位线,可得OEBC,所以易求DOE的周长【详解】解:ABCD的周长为36,2(BCCD)36,则BCCD18四边形ABCD是平行四边形,对角线AC,BD相交于点O,BD12,ODOBBD6又点E是CD的中点,OE是BCD的中位线,DECD,OEBC,DOE的周长ODOEDEBD(BCCD)6915,故选:B【点睛】本题考查了三角形中位线定理、平行四边形的性质解题时,利用了“平行四边形对角线互相平分”、“平行四边形的对边相等”的性质9、D【分析】根据平行四边形的判定与性质,求解即可【详解】解:ABCD,ADBC四边形为平行四边形,、又,、图中的
11、全等三角形共有4对故选:D【点睛】此题考查了平行四边形的判定与性质,全等三角形的判定与性质,解题的关键是掌握平行四边形的判定与性质10、B【分析】任意多边形的外角和为360,然后利用多边形的内角和公式计算即可【详解】解:设多边形的边数为n根据题意得:(n2)180360,解得:n4故选:B【点睛】本题主要考查的是多边形的内角和和外角和,掌握任意多边形的外角和为360和多边形的内角和公式是解题的关键二、填空题1、八【分析】利用任意多边形的外角和均为360,正多边形的每个外角相等即可求出答案【详解】36045=8故它是正八边形故答案为:八【点睛】此题主要考查了多边形的外角和,利用任意凸多边形的外角
12、和均为360,正多边形的每个外角相等即可求出答案2、【分析】过点A作AD/BC,且ADMN,连接MD,则四边形ADMN是平行四边形,作点A关于BC的对称点A,连接AA交BC于点O,连接AM,三点D、M、A共线时,最小为AD的长,利用勾股定理求AD的长度即可解决问题【详解】解:过点A作AD/BC,且ADMN,连接MD,则四边形ADMN是平行四边形,MDAN,ADMN,作点A关于BC的对称点A,连接A A交BC于点O,连接AM,则AMAM,AMANAMDM,三点D、M、A共线时,AMDM最小为AD的长,AD/BC,AOBC,DA90,BCBOCOAO,在RtAD中,由勾股定理得:D的最小是值为:,
13、故答案为:【点睛】本题主要考查了等腰三角形的性质,平行四边形的判定与性质,勾股定理等知识,构造平行四边形将AN转化为DM是解题的关键3、6【分析】根据三角形的中位线等于第三边的一半进行计算即可【详解】解:D、E分别是ABC边AB、AC的中点,DE是ABC的中位线,BC=12,DE=BC=6,故答案为6【点睛】本题主要考查了三角形中位线定理,熟知三角形中位线定理是解题的关键4、6【分析】根据内角和等于外角和的2倍则内角和是720利用多边形内角和公式得到关于边数的方程,解方程就可以求出多边形的边数【详解】解:根据题意,得(n2)1803602,解得:n6故这个多边形的边数为6故答案为:6【点睛】本
14、题主要考查了多边形的内角和以及外角和,已知多边形的内角和求边数,可以转化为方程的问题来解决5、6cm【分析】根据三角形的中位线定理,ABC的各边长等于DEF的各边长的2倍,从而得出DEF的周长【详解】解:点D、E、F分别是ABC三边的中点,AB=2EF,AC=2DE,BC=2DF,=12cm,AB+AC+BC=2(DE+EF+DF)=12cmcm故答案是:6cm【点睛】本题考查了三角形的中位线定理,根据中点判断出中位线,再利用中位线定理解题是关键三、解答题1、(1)48(2)【分析】(1)利用勾股定理先求出高AC,故可求解面积;(2)根据平行四边形的性质求出AO,再利用勾股定理求出OB的长,故
15、可求解【详解】解:(1)四边形ABCD是平行四边形,且AD=8BC=AD=8ACBCACB=90在RtABC中,由勾股定理得AC2=AB2-BC2(2)四边形ABCD是平行四边形,且AC=6ACB=90,BC=8,【点睛】此题主要考查平行四边形的性质,解题的关键是熟知平行四边形的性质及勾股定理的应用2、见解析【分析】在n边形内任取一点O,连接O与各顶点的线段把n边形分成了n个三角形,然后利用n个三角形的面积减去以O为公共顶点的n个角的和,即可求证【详解】已知: n边形A1A2An,求证: ,证明:如图,在n边形内任取一点O,连接O与各顶点的线段把n边形分成了n个三角形,n个三角形内角和为n18
16、0,以O为公共顶点的n个角的和360(即一个周角),n边形内角和为 【点睛】本题主要考查了多边形的内角和,做适当辅助线,得到n边形的内角和等于n个三角形的面积减去以O为公共顶点的n个角的和是解题的关键3、见解析【分析】先求出DEBF,再证明四边形BEDF是平行四边形,即可得出结论【详解】证明:四边形ABCD是平行四边形ADBC,AD/BC,AECF,DEBF,又DE/BF,四边形BEDF是平行四边形,BE/DF【点睛】本题考查了平行四边形的判定与性质;熟练掌握平行四边形的判定方法,证明四边形是平行四边形是解决问题的关键4、证明见解析【分析】连接,由三角形中位线定理可得,可证四边形ADEF是平行
17、四边形,由平行四边形的性质可得AE,DF互相平分;【详解】证明:连接,ADDB,BEEC,BEEC,AFFC,四边形ADEF是平行四边形,AE,DF互相平分【点睛】本题考查了平行四边形的性质判定和性质及三角形中位线定理,灵活运用这些性质是解题的关键5、(1)ACB是直角三角形,理由见解析;(2)D1(0,-1),D2(-4,1),D3(4,7)【分析】(1)根据勾股定理的判定即可确定ABC的形状;(2)根据平行四边的性质与判定定理,结合图形,即可得出答案【详解】解:(1) , ACB是直角三角形;(2) D1(0,-1),D2(-4,1),D3(4,7)【点睛】本题考查了直角三角形的判定,平行四边形的性质和判定,平面直角坐标系中点的坐标,解题的关键结合平行四边形的性质写出点的坐标