《2021-2022学年浙教版初中数学七年级下册第四章因式分解定向测评试题(无超纲).docx》由会员分享,可在线阅读,更多相关《2021-2022学年浙教版初中数学七年级下册第四章因式分解定向测评试题(无超纲).docx(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、章节同步练习2022年浙教版初中数学 七年级下册知识点习题定向攻克含答案及详细解析第四章 因式分解浙教版初中数学七年级下册第四章因式分解定向测评(2021-2022学年 考试时间:90分钟,总分100分)班级:_ 姓名:_ 总分:_题号一二三得分一、单选题(15小题,每小题3分,共计45分)1、下列各式从左到右的变形是因式分解的是( )A.axbxc(ab)xcB.(ab)(ab)a2b2C.(ab)2a22abb2D.a25a6(a6)(a1)2、下列分解因式正确的是()A.100p225q2(10p+5q)(10p5q)B.x2+x6(x3)(x+2)C.4m2+n2(2m+n)(2mn)
2、D.3、对于任何整数a,多项式都能( )A.被3整除B.被4整除C.被5整除D.被a整除4、下列因式分解结果正确的是( )A.B.C.D.5、下列因式分解正确的是()A.x29(x3)(x3)B.x2x6(x2)(x3)C.3x6y33(x2y)D.x22x1(x1)26、下列各式从左边到右边的变形,是因式分解且分解正确的是 ( )A.(a+1)(a-1)=a2-1B.ab+ac+1=a(b+c)+1C. a2-2a-3=(a-1)(a-3)D.a2-8a+16=(a-4)27、下列因式分解正确的是()A.ab+bc+bb(a+c)B.a29(a+3)(a3)C.(a1)2+(a1)a2aD.
3、a(a1)a2a8、若x2+mx+n分解因式的结果是(x2)(x+1),则m+n的值为()A.3B.3C.1D.19、的值为( )A.B.C.D.35310、已知,那么的值为( )A.3B.6C.D.11、多项式可以因式分解成,则的值是( )A.-1B.1C.-5D.512、下列各式中,由左向右的变形是分解因式的是( )A.B.C.D.13、已知,则的值是( )A.6B.6C.1D.114、若,则的值为( )A.B.C.D.15、下列各式从左到右的变形中,是因式分解的为( ).A.B.C.D.二、填空题(10小题,每小题4分,共计40分)1、因式分解:_2、因式分解:_3、若xz2,zy1,则
4、x22xyy2_4、若,则多项式的值为_5、多项式的公因式是_6、分解因式:_7、若,则_8、若,则的值是_9、分解因式:xy3x+y3_10、若代数式x2a在有理数范围内可以因式分解,则整数a的值可以为_(写出一个即可)三、解答题(3小题,每小题5分,共计15分)1、因式分解:(1); (2)2、在“整式乘法与因式分解“一章的学习中,我们采用了构造几何图形的方法研究问题,借助直观、形象的几何模型,加深对公式的认识和理解,从中感悟数形结合的思想方法,感悟几何与代数内在的统一性,根据课堂学习的经验,解决下列问题:(1)如图1,有若干张A类、C类正方形卡片和B类长方形卡片(其中ab),若取2张A类
5、卡片、3张B类卡片、1张C类卡片拼成如图的长方形,借助图形,将多项式2a2+3ab+b2分解因式:2a2+3ab+b2 (2)若现有3张A类卡片,6张B类卡片,10张C类卡片,从其中取出若干张,每种卡片至少取一张,把取出的这些卡片拼成一个正方形(所拼的图中既不能有缝隙,也不能有重合部分),则拼成的正方形的边长最大是 (3)若取1张C类卡片和4张A类卡片按图3、4两种方式摆放,求图4中,大正方形中未被4个小正方形覆盖部分的面积(用含m、n的代数式表示)3、分解因式:(x2y)(2x3y)2(2yx)(5xy)-参考答案-一、单选题1、D【分析】根据因式分解的定义对各选项进行逐一分析即可.【详解】
6、解:A、axbxc(ab)xc,等式的右边不是几个整式的积,不是因式分解,故此选项不符合题意;B、(ab)(ab)a2b2,等式的右边不是几个整式的积,不是因式分解,故此选项不符合题意;C、(ab)2a22abb2,等式的右边不是几个整式的积,不是因式分解,故此选项不符合题意;D、a25a6(a6)(a1),等式的右边是几个整式的积的形式,故是因式分解,故此选项符合题意;故选:D.【点睛】本题考查了分解因式的定义.解题的关键是掌握分解因式的定义,即把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.2、C【分析】根据因式分解的各种方法逐个判断即可.【详解】解:
7、A.,故本选项不符合题意;B.,故本选项不符合题意;C.故本选项符合题意;D.,所以,故本选项不符合题意;故选:C.【点睛】此题考查了因式分解的方法,熟练掌握因式分解的有关方法是解题的关键.3、B【分析】多项式利用完全平方公式分解,即可做出判断.【详解】解:原式则对于任何整数a,多项式都能被4整除.故选:B.【点睛】此题考查了因式分解-运用公式法,熟练掌握完全平方公式是解本题的关键.4、C【分析】根据提公因式法、平方差公式以及十字相乘法进行解答.【详解】解:A、原式x(x4),故本选项不符合题意;B、原式(2x+y)(2xy),故本选项不符合题意;C、原式(x+1)2,故本选项符合题意;D、原
8、式(x+1)(x6),故本选项不符合题意,故选:C.【点睛】本题主要考查了提公因式法、平方差公式以及十字相乘法因式分解,属于基础题.5、B【分析】利用公式法对A、D进行判断;根据十字相乘法对B进行判断;根据提公因式对C进行判断.【详解】解:A、x29不能分解,所以A选项不符合题意;B、x2x6(x2)(x3),所以B选项符合题意;C、3x6y33(x2y1),所以C选项不符合题意;D、x22x1在有理数范围内不能分解,所以D选项不符合题意.故选:B.【点睛】本题考查了因式分解十字相乘法等:对于x2(pq)xpq型的式子的因式分解.这类二次三项式的特点是:二次项的系数是1;常数项是两个数的积;可
9、以直接将某些二次项的系数是1的二次三项式因式分解:x2(pq)xpq(xp)(xq).6、D【分析】分解因式就是把一个多项式化为几个整式的积的形式.因此,要确定从左到右的变形中是否为分解因式,只需根据定义来确定.【详解】解:A、是多项式乘法,不是因式分解,原变形错误,故此选项不符合题意;B、右边不是整式的积的形式,不是因式分解,原变形错误,故此选项不符合题意;C、a2-2a-3=(a+1)(a-3)分解时出现符号错误,原变形错误,故此选项不符合题意;D、符合因式分解的定义,是因式分解,原变形正确,故此选项符合题意.故选:D.【点睛】本题考查了因式分解.解题的关键是理解因式分解的定义:把一个多项
10、式化为几个最简整式的积的形式,这种变形叫做把这个多项式因式分解,然后进行正确的因式分解.7、B【分析】把一个多项式化为几个最简整式的乘积的形式,这种变形叫做把这个因式分解.【详解】解:A.ab+bc+bb(a+c+1),因此选项A不符合题意;B.a29(a+3)(a3),因此选项B符合题意;C.(a1)2+(a1)(a1)(a1+1)a(a1),因此选项C不符合题意;D.a(a1)a2a,不是因式分解,因此选项D不符合题意;故选:B.【点睛】本题考查因式分解,涉及提公因式、平方差、完全平方公式等知识,是重要考点,掌握相关知识是解题关键.8、A【分析】先根据多项式乘以多项式法则进行计算,再根据已
11、知条件求出m、n的值,最后求出答案即可.【详解】解:(x2)(x+1)x2+x2x2x2x2,二次三项式x2+mx+n可分解为(x2)(x+1),m1,n2,m+n1+(2)3,故选:A.【点睛】本题考查了多项式乘以多项式法则和分解因式,能够理解分解因式和多项式乘多项式是互逆运算是解决本题的关键.9、D【分析】观察式子中有4次方与4的和,将因式分解,再根据因式分解的结果代入式子即可求解【详解】原式故答案为:【点睛】本题考查了因式分解的应用,找到是解题的关键.10、D【分析】根据完全平方公式求出,再把原式因式分解后可代入求值.【详解】解:因为,所以,所以故选:D【点睛】考核知识点:因式分解的应用
12、.灵活应用完全平方公式进行变形是解题的关键.11、D【分析】先提公因式,然后将原多项式因式分解,可求出和 的值,即可计算求得答案.【详解】解:,.故选:.【点睛】本题考查了提公因式法分解因式,准确找到公因式是解题的关键.12、B【分析】判断一个式子是否是因式分解的条件是等式的左边是一个多项式,等式的右边是几个整式的积,左、右两边相等,根据以上条件进行判断即可.【详解】解:A、,不是因式分解;故A错误;B、,是因式分解;故B正确;C、,故C错误;D、,不是因式分解,故D错误;故选:B.【点睛】本题考查了因式分解的意义,把多项式转化成几个整式积的形式是解题关键.13、B【分析】首先将 变形为,再代
13、入计算即可.【详解】解:, ,故选:B.【点睛】本题考查提公因式法因式分解,解题关键是准确找出公因式,将原式分解因式.14、C【分析】根据十字相乘法可直接进行求解a、b的值,然后问题可求解.【详解】解:,;故选C.【点睛】本题主要考查因式分解,熟练掌握因式分解的方法是解题的关键.15、B【分析】根据因式分解的定义把一个多项式化成几个整式的积的形式,叫因式分解.然后对各选项逐个判断即可.【详解】解:A、两因式之间用加号连结,是和的形式不是因式分解,故本选项不符合题意;B、是因式分解,故本选项符合题意;C、将积化为和差形式,是多项式乘法运算,不是因式分解,故本选项不符合题意;D、两因式之间用加号连
14、结,是和的形式,不是因式分解,故本选项不符合题意;故选:B.【点睛】本题考查了因式分解的定义,能熟记因式分解的定义的内容是解此题的关键 .二、填空题1、【分析】先提公因式,再用平方差公式分解即可.【详解】故答案为:【点睛】本题综合考查了提公因式法和公式法分解因式,一般地,因式分解的步骤是:先考虑提公因式;其次考虑用公式法.另外,因式分解要分解到再也不能分解为止.2、【分析】先提取公因式,然后运用完全平方公式因式分解即可.【详解】解:,故答案为:.【点睛】本题主要考查提公因式因式分解以及公式法因式分解,熟知完全平方公式的结构特点是解题关键.3、9【分析】先根据xz2,zy1可得xy3,再根据完全
15、平方公式因式分解即可求解.【详解】解:xz2,zy1,xzzy21,即:xy3,x22xyy2(xy)29,故答案为:9.【点睛】本题考查了完全平方公式进行因式分解以及整式加减,熟练掌握完全平方公式是解决本题的关键.4、3【分析】将多项式多项式a2+b2+c2abbcac分解成(ab)2+(ac)2+(bc)2,再把a,b,c代入可求.【详解】解:;a2+b2+c2abbcac(2a2+2b2+2c22ab2ac2bc)(ab)2+(ac)2+(bc)2,a2+b2+c2abbcac(1+4+1)3;故答案为:3.【点睛】本题考查了因式分解的应用,关键是将多项式配成完全平方形式.5、【分析】找
16、出多项式中各单项式的公共部分即可.【详解】解:多项式的公因式是:,故答案为:.【点睛】本题主要考查公因式的概念,找出多项式中各单项式的公共部分是解题的关键.6、【分析】根据分解因式的步骤,先提取公因式再利用完全平方公式分解即可.【详解】解:,故答案为: .【点睛】本题主要考查了因式分解,熟悉掌握因式分解的方法是解题的关键.7、3【分析】利用因式分解求出的值,再代入中即可.【详解】解:,取或,将的值,再代入中,故答案是:.【点睛】本题考查了因式分解,解题的关键是利用十字交叉相乘法进行因式分解,求出.8、16【分析】将代数式因式分解,再将已知式子的值代入计算即可.【详解】解:,=16故答案为:16
17、.【点睛】此题考查代数式求值,因式分解的应用,注意整体代入思想是解答此题的关键.9、(y3)(x+1)【分析】直接利用分组分解法、提取公因式法分解因式得出答案.【详解】解:xy3x+y3x(y3)+(y3)(y3)(x+1).故答案为:(y3)(x+1).【点睛】本题主要考查了利用提取公因式的方法分解因式,解题的关键在于能够熟练掌握提公因式的方法分解因式.10、1【分析】直接利用平方差公式分解因式得出答案.【详解】解:当a1时,x2ax21(x+1)(x1),故a的值可以为1(答案不唯一).故答案为:1(答案不唯一).【点睛】此题主要考查了公式法分解因式,正确应用平方差公式是解题关键.三、解答
18、题1、(1);(2)【分析】(1)利用平方差公式分解因式即可得到答案;(2)先提取公因式“3n”,再利用完全平方公式分解因式即可得到答案.【详解】解:(1);(2).【点睛】本题主要考查了分解因式,解题的关键在于能够熟练掌握分解因式的方法.2、(1)(2a+b)(a+b);(2)a+3b;(3)mn【分析】(1)用两种方法表示正方形的面积,即可得到答案;(2)先算出纸片的总面积,然后凑出完全平方公式,进而即可求解;(3)根据图(3)用含m,n的代数式表示a,b,进而即可求解.【详解】解:(1)长方形的面积=2a2+3ab+b2,长方形的面积=(2a+b)(a+b),2a2+3ab+b2=(2a
19、+b)(a+b),故答案是:(2a+b)(a+b);(2)由题意可知:这些纸片的总面积=3a2+6ab+10b2,需要拼成正方形,取a2+6ab+9b2=(a+3b)2,此时正方形的边长为a+3b,故答案是:a+3b;(3)由图(3)可知:2a+b=m,由图(4)可知:b-2a=n,大正方形中未被4个小正方形覆盖部分的面积=.【点睛】本题主要考查完全平方公式和几何图形的面积,用代数式表示图形的面积,掌握完全平方公式,是解题的关键.3、【分析】根据提公因式法分解因式求解即可.分解因式的方法有:提公因式法,平方差公式法,完全平方公式法,十字相乘法等.【详解】解:(x2y)(2x3y)2(2yx)(5xy)【点睛】此题考查了分解因式,解题的关键是熟练掌握分解因式的方法.分解因式的方法有:提公因式法,平方差公式法,完全平方公式法,十字相乘法等.