2021-2022学年浙教版初中数学七年级下册第四章因式分解综合练习试题(含答案解析).docx

上传人:知****量 文档编号:28149302 上传时间:2022-07-26 格式:DOCX 页数:19 大小:222.63KB
返回 下载 相关 举报
2021-2022学年浙教版初中数学七年级下册第四章因式分解综合练习试题(含答案解析).docx_第1页
第1页 / 共19页
2021-2022学年浙教版初中数学七年级下册第四章因式分解综合练习试题(含答案解析).docx_第2页
第2页 / 共19页
点击查看更多>>
资源描述

《2021-2022学年浙教版初中数学七年级下册第四章因式分解综合练习试题(含答案解析).docx》由会员分享,可在线阅读,更多相关《2021-2022学年浙教版初中数学七年级下册第四章因式分解综合练习试题(含答案解析).docx(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、初中数学七年级下册第四章因式分解综合练习(2021-2022学年 考试时间:90分钟,总分100分)班级:_ 姓名:_ 总分:_题号一二三得分一、单选题(15小题,每小题3分,共计45分)1、下列各式变形中,是因式分解的是( )A.B.C.D.2、多项式x2y(ab)y(ba)提公因式后,余下的部分是()A.x2+1B.x+1C.x21D.x2y+y3、多项式的各项的公因式是( )A.B.C.D.4、已知,那么的值为( )A.3B.6C.D.5、下列各式由左边到右边的变形,是因式分解的是( )A.B.C.D.6、下列分解因式正确的是()A.B.C.D.7、下列各组式子中,没有公因式的是()A.

2、a2+ab与ab2a2bB.mx+y与x+yC.(a+b)2与abD.5m(xy)与yx8、下列各式从左到右的变形,属于因式分解的是()A.ab+bc+bb(a+c)+bB.a29(a+3)(a3)C.(a1)2+(a1)a2aD.a(a1)a2a9、下列等式从左到右的变形,属于因式分解的是()A.x2+2x1(x1)2B.(a+b)(ab)a2b2C.x2+4x+4(x+2)2D.ax2aa(x21)10、下列各式从左到右的变形是因式分解为( )A.B.C.D.11、若a2-b2=4,a-b=2,则a+b的值为( )A.- B. C.1D.212、下列由左边到右边的变形中,属于因式分解的是(

3、 )A.(a1)(a1)a21B.a26a9(a3)2C.a22a1a(a2)1D.a25aa2(1)13、多项式可以因式分解成,则的值是( )A.-1B.1C.-5D.514、下面的多项式中,能因式分解的是()A.2m2B.m2+n2C.m2nD.m2n+115、下列各式由左边到右边的变形,是因式分解的是()A.x2+xy4x(x+y)4B.C.(x+2)(x2)x24D.x22x+1(x1)2二、填空题(10小题,每小题4分,共计40分)1、若xz2,zy1,则x22xyy2_2、已知实数a和b适合a2b2a2b214ab,则ab_3、因式分解:x26x_;(3mn)23m+n_4、因式分

4、解x2+ax+b时,李明看错了a的值,分解的结果是(x+6)(x2),王勇看错了b的值,分解的结果是(x+2)(x3),那么x2+ax+b因式分解正确的结果是_5、已知,则_6、若xy6,xy4,则x2yxy2_7、因式分解(ab)2a+b的结果是_8、因式分解:_9、10029929829729629522212_10、分解因式:_;_三、解答题(3小题,每小题5分,共计15分)1、因式分解:6m3n+4mn22mn2、(1)将一个多项式分组后,可提公因式或运用公式继续分解的方法是分组分解法例如:分解因式:;若都是正整数且满足,求的值;(2)若为实数且满足,求的最小值3、分解因式:18a3b

5、+14a2b2abc-参考答案-一、单选题1、D【分析】根据因式分解是把一个多项式转化成几个整式乘积的形式,可得答案.【详解】解:A、等式的右边不是整式的积的形式,故A错误;B、等式右边分母含有字母不是因式分解,故B错误;C、等式的右边不是整式的积的形式,故C错误;D、是因式分解,故D正确;故选D.【点睛】本题考查了因式分解的定义,因式分解是把一个多项式转化成几个整式乘积的形式.2、A【详解】直接提取公因式y(ab)分解因式即可.【解答】解:x2y(ab)y(ba)x2y(ab)+y(ab)y(ab)(x2+1).故选:A.【点睛】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.

6、3、A【分析】公因式的定义:一个多项式中每一项都含有的相同的因式,叫做这个多项式各项的公因式.由公因式的定义求解.【详解】解:这三个单项式的数字最大公因数是1,三项含有字母是a,b,其中a的最低次幂是a2,b的最低次幂是b,所以多项式的公因式是.故选A.【点睛】本题主要考查了公因式,关键是掌握确定多项式中各项的公因式,可概括为三“定”:定系数,即确定各项系数的最大公约数;定字母,即确定各项的相同字母因式(或相同多项式因式);定指数,即各项相同字母因式(或相同多项式因式)的指数的最低次幂.4、D【分析】根据完全平方公式求出,再把原式因式分解后可代入求值.【详解】解:因为,所以,所以故选:D【点睛

7、】考核知识点:因式分解的应用.灵活应用完全平方公式进行变形是解题的关键.5、D【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】解:A、是整式的乘法,故不符合;B、没把一个多项式转化成几个整式积的形式,故不符合;C、没把一个多项式转化成几个整式积的形式,故不符合;D、把一个多项式转化成几个整式积的形式,故符合;故选:D.【点睛】本题考查因式分解的定义;掌握因式分解的定义和因式分解的等式的基本形式是解题的关键.6、D【分析】本题考查的是提公因式法与公式法的综合运用,根据分解因式的定义,以及完全平方公式即可作出解答.【详解】A. m2+n2,不能因式分解; B.16m24

8、n2=4(4m2n)(4m+2n),原因式分解错误; C. a33a2+a=a(a23a+1),原因式分解错误; D.4a24ab+b2=(2ab)2,原因式分解正确.故选:D.【点睛】此题考查了运用提公因式法和公式法进行因式分解,熟练掌握公式法因式分解是解本题的关键.7、B【分析】公因式的定义:多项式中,各项都含有一个公共的因式,因式叫做这个多项式各项的公因式.【详解】解:、因为,所以与是公因式是,故本选项不符合题意;、与没有公因式.故本选项符合题意;、因为,所以与的公因式是,故本选项不符合题意;、因为,所以与的公因式是,故本选项不符合题意;故选:B.【点睛】本题主要考查公因式的确定,解题的

9、关键是先利用提公因式法和公式法分解因式,然后再确定公共因式.8、B【分析】根据因式分解的定义逐项排查即可.【详解】解:根据因式分解的定义可知:A、C、D都不属于因式分解,只有B属于因式分解.故选B.【点睛】本题主要考查了因式分解的定义,把一个多项式化为几个最简整式的乘积的形式,这种变形叫做把这个因式分解.9、C【分析】根据因式分解的意义,把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解分别进行判断,即可得出答案.【详解】A. x2+2x1(x1)2,故A不符合题意;B. a2b2=(a+b)(ab),故B不符合题意;C. x2+4x+4(x+2)2,是因式分解,故C符合题意

10、;D. ax2aa(x21)=a(x+1)(x-1),分解不完全,故D不符合题意;故选:C.【点睛】本题考查了因式分解的意义,解题的关键是正确理解因式分解的意义.10、D【分析】把一个多项式化成几个整式积的形式,叫因式分解,根据因式分解的定义判断即可.【详解】A. ,属于整式的乘法运算,故本选项错误;B. ,属于整式的乘法运算,故本选项错误;C. 左边和右边不相等,故本选项错误;D. ,符合因式分解的定义,故本选项正确;故选:D【点睛】此题考查了因式分解的定义.解题的关键是掌握因式分解的定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解.11、D【分析】平方差公式为(a

11、+b)(a-b)=a2-b2可以得到a2-b2=(a+b)(a-b),把已知条件代入可以求得(a+b)的值.【详解】a2- b2=4,a- b=1,由a2-b2=(a+b)(a-b)得到,4=2(a+b),a+b=2,故选:D.【点睛】本题考查了平方差公式,熟练掌握平方差公式是解题的关键.公式:(a+b)(a-b)=a2-b2.12、B【分析】根据因式分解的定义逐个判断即可.【详解】解:A.由左边到右边的变形属于整式乘法,不属于因式分解,故本选项不符合题意;B.由左边到右边的变形属于因式分解,故本选项符合题意;C.由左边到右边的变形不属于因式分解,故本选项不符合题意;D.等式的右边不是整式的积

12、的形式,即由左边到右边的变形不属于因式分解,故本选项不符合题意;故选:B.【点睛】本题考查了因式分解的定义,能熟记因式分解的定义是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.13、D【分析】先提公因式,然后将原多项式因式分解,可求出和 的值,即可计算求得答案.【详解】解:,.故选:.【点睛】本题考查了提公因式法分解因式,准确找到公因式是解题的关键.14、A【分析】分别根据提公因式法因式分解以及乘法公式逐一判断即可.【详解】解:A、2m22(m1),故本选项符合题意;B、m2+n2,不能因式分解,故本选项不合题意;C、m2n,不能因式分解,故本选项不合题意;D、m2n+1

13、,不能因式分解,故本选项不合题意;故选A.【点睛】本题主要考查了因式分解,解题的关键在于能够熟练掌握因式分解的方法.15、D【分析】根据因式分解的定义逐个判断即可.【详解】解:A.从等式左边到右边的变形不属于因式分解,故本选项不符合题意;B.等式的右边不是整式的积,即从等式左边到右边的变形不属于因式分解,故本选项不符合题意;C.从等式左边到右边的变形不属于因式分解,故本选项不符合题意;D.从等式左边到右边的变形属于因式分解,故本选项符合题意;故选:D.【点睛】本题考查了因式分解的定义,能熟记因式分解的定义是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.二、填空题1、9【分

14、析】先根据xz2,zy1可得xy3,再根据完全平方公式因式分解即可求解.【详解】解:xz2,zy1,xzzy21,即:xy3,x22xyy2(xy)29,故答案为:9.【点睛】本题考查了完全平方公式进行因式分解以及整式加减,熟练掌握完全平方公式是解决本题的关键.2、2或2【分析】先将原式分组分解因式,再根据非负数的性质“两个非负数相加和为0,这两个非负数的值都为0”即可求得a、b的值,再代入计算即可求得答案.【详解】解:a2b2a2b214ab,a2b22ab1a22abb20,(ab1)2(ab)20,又(ab1)20,(ab)20,ab10,ab0,ab1,ab,a21,a1,ab1或ab

15、1,当ab1时,ab2;当ab1时,ab2,故答案为:2或2.【点睛】此题考查了因式分解的运用,非负数的性质,熟练掌握完全平方公式是解决本题的关键.3、x(x6) (3mn)(3mn1) 【分析】把x26x 中x提取出来即可,给(3mn)23m+n先加括号,然后再运用提取公因式法分解因式即可.【详解】解:x26xx(x6);(3mn)23m+n(3mn)2(3mn)(3mn)(3mn1).故答案为:x(x6),(3mn)(3mn1).【点睛】本题主要考查了提取公因式法分解因式,正确添加括号成为解答本题的关键.4、(x4)(x+3)【分析】根据甲、乙看错的情况下得出a、b的值,进而再利用十字相乘

16、法分解因式即可.【详解】解:因式分解x2+ax+b时,李明看错了a的值,分解的结果是(x+6)(x2),b6(2)12,又王勇看错了b的值,分解的结果为(x+2)(x3),a3+21,原二次三项式为x2x12,因此,x2x12(x4)(x+3),故答案为:(x4)(x+3).【点睛】本题主要考查了十字相乘分解因式,解题的关键在于能够熟练掌握十字相乘法.5、18【分析】本题要求代数式a3b-2a2b2+ab3的值,而代数式a3b-2a2b2+ab3恰好可以分解为两个已知条件ab,(a-b)的乘积,因此可以运用整体的数学思想来解答.【详解】解:a3b-2a2b2+ab3=ab(a2-2ab+b2)

17、=ab(a-b)2当a-b=3,ab=2时,原式=232=18,故答案为:18【点睛】本题既考查了对因式分解方法的掌握,又考查了代数式求值的方法,同时还隐含了整体的数学思想和正确运算的能力.6、24【分析】先对后面的式子进行因式分解,然后根据已知条件代值即可.【详解】 xy6,xy4,x2yxy2 故答案为:24.【点睛】本题主要考查提取公因式进行因式分解,属于基础题,比较容易,熟练掌握因式分解的方法是解题的关键.7、(ab)(ab1)【分析】先整理,再根据提取公因式法分解因式即可得出答案.【详解】解:(ab)2a+b(ab)2(ab)(ab)(ab1).故答案为:(ab)(ab1).【点睛】

18、本题考查了分解因式,熟练掌握提取公因式法分解因式是解题的关键.8、【分析】先提取公因式,然后运用完全平方公式因式分解即可.【详解】解:,故答案为:.【点睛】本题主要考查提公因式因式分解以及公式法因式分解,熟知完全平方公式的结构特点是解题关键.9、5050【分析】先根据平方差公式进行因式分解,再计算加法,即可求解.【详解】解: 1002-992 + 982-972 + 962-952 +22-12=(100 + 99)(100-99)+(98 + 97)(98-97)+(2+1)(2-1)= 100+ 99+98+ 97+2+1 = 5050.故答案为:5050【点睛】本题主要考查了平方差公式的

19、应用,熟练掌握平方差公式 的特征是解题的关键.10、 【分析】第1个式子利用平方差公式分解即可;第1个式子先提取公因式,再利用完全平方公式继续分解即可.【详解】解:;故答案为:;.【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.三、解答题1、-2mn(3m2-2n+1).【分析】原式提取-2mn,即可分解.【详解】解:-6m3n+4mn2-2mn=-2mn(3m2-2n+1).【点睛】本题考查了提公因式分解因式,熟练掌握因式分解的方法是解本题的关键.2、(1);8;(2)【分析】(1)根据题意分组分解即可;根据的结论可得,进而根据都是正整数,列二元一次方程组解决问题;(2)先将利用分组分解法因式分解,再将已知条件整体代入,化为完全平方式,最后根据非负数的性质确定的最小值.【详解】解:(1)由题即为正整数且即 (2)由题,当且仅当时取等号经验证当时满足综上,的最小值为.【点睛】本题考查了提公因式法因式分解,分组分解法因式分解,二元一次方程组,非负数的性质,整体代入是解题的关键.3、2ab(9a2+7ac)【分析】确定公因式2ab,然后提公因式即可.【详解】解:原式2ab(9a2+7ac).【点睛】本题主要考查了因式分解,解题的关键在于能够准确观察出公因式是2ab.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁