2021-2022学年浙教版初中数学七年级下册第四章因式分解章节练习试题(含答案解析).docx

上传人:可****阿 文档编号:32543669 上传时间:2022-08-09 格式:DOCX 页数:20 大小:216.04KB
返回 下载 相关 举报
2021-2022学年浙教版初中数学七年级下册第四章因式分解章节练习试题(含答案解析).docx_第1页
第1页 / 共20页
2021-2022学年浙教版初中数学七年级下册第四章因式分解章节练习试题(含答案解析).docx_第2页
第2页 / 共20页
点击查看更多>>
资源描述

《2021-2022学年浙教版初中数学七年级下册第四章因式分解章节练习试题(含答案解析).docx》由会员分享,可在线阅读,更多相关《2021-2022学年浙教版初中数学七年级下册第四章因式分解章节练习试题(含答案解析).docx(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、初中数学七年级下册第四章因式分解章节练习(2021-2022学年 考试时间:90分钟,总分100分)班级:_ 姓名:_ 总分:_题号一二三得分一、单选题(15小题,每小题3分,共计45分)1、下列因式分解正确的是( )A.3ab26ab3a(b22b)B.x(ab)y(ba)(ab)(xy)C.a2+2ab4b2(a2b)2D.a2+a(2a1)22、下列等式从左到右的变形,属于因式分解的是()A.m (a+b)ma+mbB.x2+2x+1x(x+2)+1C.x2+xx2(1+)D.x29(x+3)(x3)3、下列因式分解正确的是()A.ab+bc+bb(a+c)B.a29(a+3)(a3)C

2、.(a1)2+(a1)a2aD.a(a1)a2a4、下列各式中不能用公式法因式分解的是( )A.x24B.x24C.x2xD.x24x45、下列各式由左边到右边的变形,是因式分解的是()A.x2+xy4x(x+y)4B.C.(x+2)(x2)x24D.x22x+1(x1)26、把代数式ax28ax+16a分解因式,下列结果中正确的是()A.a(x+4)2B.a(x4)2C.a(x8)2D.a(x+4)(x4)7、下列各式从左到右的变形中,为因式分解的是()A.x(ab)axbxB.x21+y2(x1)(x+1)+y2C.ax+bx+cx(a+b)+cD.y21(y+1)(y1)8、下列多项式能

3、用公式法分解因式的是()A.m2+4mnB.m2+n2C.a2+ab+b2D.a24ab+4b29、若,则的值为( )A.B.C.D.10、下列各式能用平方差公式分解因式的是( )A.B.C.D.11、下列等式中,从左到右是因式分解的是( )A.B.C.D.12、的值为( )A.B.C.D.35313、把多项式x2+mx+35进行因式分解为(x5)(x+7),则m的值是()A.2B.2C.12D.1214、下列各式从左到右的变形是因式分解为( )A.B.C.D.15、下列因式分解正确的是( )A.B.C.D.二、填空题(10小题,每小题4分,共计40分)1、若a+b2,a2b210,则2021

4、a+b的值是 _2、因式分解:_3、因式分解:_4、已知,则的值等于_5、分解因式:_6、如果,那么的值为_7、若,则_8、已知二次三项式x2+px+q因式分解的结果是(x3)(x5),则p+q=_9、请从,16,四个式子中,任选两个式子做差得到一个多项式,然后对其进行因式分解是_10、分解因式:_;_三、解答题(3小题,每小题5分,共计15分)1、分解因式:(1)2x218;(2)3m2n12mn12n;(3)(ab)26(ab)9;(4)(x29)236x22、把下列多项式因式分解:(1)n2(n1)n(1n);(2)4x34x;(3)16x48x2y2+y4;(4)(x1)2+2(x5)

5、3、分解因式:-参考答案-一、单选题1、D【分析】根据因式分解的定义及方法即可得出答案.【详解】A:根据因式分解的定义,每个因式要分解彻底,由3ab26ab3a(b22b)中因式b22b分解不彻底,故A不符合题意.B:将x(ab)y(ba)变形为x(ab)+y(ab),再提取公因式,得x(ab)y(ba)x(ab)+y(ab)(ab)(x+y),故B不符合题意.C:形如a22ab+b2是完全平方式,a2+2ab4b2不是完全平方式,也没有公因式,不可进行因式分解,故C不符合题意.D:先将变形为,再运用公式法进行分解,得,故D符合题意.故答案选择D.【点睛】本题考查的是因式分解,注意因式分解的定

6、义把一个多项式拆解成几个单项式乘积的形式.2、D【分析】根据因式分解的定义是把一个多项式化为几个整式的积的形式的变形,可得答案.【详解】解:A、是整式的乘法,不是因式分解,故此选项不符合题意;B、没把一个多项式化为几个整式的积的形式,故此选项不符合题意;C、因为的分母中含有字母,不是整式,所以没把一个多项式化为几个整式的积的形式,故此选项不符合题意;D、把一个多项式化为几个整式的积的形式,故此选项符合题意;故选:D.【点睛】本题主要考查了因式分解的定义,熟练掌握因式分解是把一个多项式化为几个整式的积的形式的变形是解题的关键.3、B【分析】把一个多项式化为几个最简整式的乘积的形式,这种变形叫做把

7、这个因式分解.【详解】解:A.ab+bc+bb(a+c+1),因此选项A不符合题意;B.a29(a+3)(a3),因此选项B符合题意;C.(a1)2+(a1)(a1)(a1+1)a(a1),因此选项C不符合题意;D.a(a1)a2a,不是因式分解,因此选项D不符合题意;故选:B.【点睛】本题考查因式分解,涉及提公因式、平方差、完全平方公式等知识,是重要考点,掌握相关知识是解题关键.4、B【分析】根据完全平方公式:a22abb2(ab)2以及平方差公式分别判断得出答案.【详解】解:A、x24(x2)(x2),不合题意;B、x24,不能用公式法分解因式,符合题意;C、x2x(x)2,运用完全平方公

8、式分解因式,不合题意;D、x24x4(x2)2,运用完全平方公式分解因式,不合题意;故选:B.【点睛】本题考查了公式法分解因式,解题的关键是熟练运用完全平方公式、平方差公式.5、D【分析】根据因式分解的定义逐个判断即可.【详解】解:A.从等式左边到右边的变形不属于因式分解,故本选项不符合题意;B.等式的右边不是整式的积,即从等式左边到右边的变形不属于因式分解,故本选项不符合题意;C.从等式左边到右边的变形不属于因式分解,故本选项不符合题意;D.从等式左边到右边的变形属于因式分解,故本选项符合题意;故选:D.【点睛】本题考查了因式分解的定义,能熟记因式分解的定义是解此题的关键,注意:把一个多项式

9、化成几个整式的积的形式,叫因式分解.6、B【分析】直接提取公因式a,再利用完全平方公式分解因式即可.【详解】解:ax28ax+16aa(x28x+16)a(x4)2.故选B.【点睛】本题主要考查了分解因式,解题的关键在于能够熟练掌握分解因式的方法.7、D【分析】根据因式分解的定义解答即可.【详解】解:A、x(ab)axbx,是整式乘法,故此选项不符合题意;B、x21+y2(x1)(x+1)+y2,不是因式分解,故此选项不符合题意;C、ax+bx+cx(a+b)+c,不是因式分解,故此选项不符合题意;D、y21(y+1)(y1),是因式分解,故此选项符合题意.故选D.【点睛】本题主要考查了因式分

10、解的定义,把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.8、D【分析】利用平方差公式,以及完全平方公式判断即可.【详解】解:A、原式m(m+4n),不符合题意;B、原式不能分解,不符合题意;C、原式不能分解,不符合题意;D、原式(a2b)2,符合题意.故选:D.【点睛】此题考查了因式分解运用公式法,熟练掌握平方差公式及完全平方公式是解本题的关键.9、C【分析】根据十字相乘法可直接进行求解a、b的值,然后问题可求解.【详解】解:,;故选C.【点睛】本题主要考查因式分解,熟练掌握因式分解的方法是解题的关键.10、D【分析】根据平方差公式逐个判断即可.【详解】

11、解:A.是m和n的平方和,不是m和n的平方差,不能用平方差公式分解因式,故本选项不符合题意;B.是2x和y的平方和,不是2x和y的平方差,不能用平方差公式分解因式,故本选项不符合题意;C.是2a和b的平方和的相反数,不能用平方差公式分解因式,故本选项不符合题意;D.,能用平方差公式分解因式,故本选项符合题意;故选:D.【点睛】本题考查了平方差公式分解因式,能熟记公式a2-b2=(a+b)(a-b)是解此题的关键.11、B【分析】根据因式分解的定义:把一个多项式化成几个整式积的形式,像这样的式子变形叫做这个多项式的因式分解,进行求解即可.【详解】解:A、,不是整式积的形式,不是因式分解,不符而合

12、题意;B、,是因式分解,符合题意;C、,不是乘积的形式,不是因式分解,不符合题意;D、,不是乘积的形式,不是因式分解,不符合题意;故选B.【点睛】本题主要考查了因式分解的定义,熟知定义是解题的关键.12、D【分析】观察式子中有4次方与4的和,将因式分解,再根据因式分解的结果代入式子即可求解【详解】原式故答案为:【点睛】本题考查了因式分解的应用,找到是解题的关键.13、B【分析】根据整式乘法法则进行计算(x5)(x+7)的结果,然后根据多项式相等进行对号入座.【详解】解:(x5)(x+7),故选:B.【点睛】此题主要考查了多项式的乘法法则以及多项式相等的条件,即两个多项式相等,则它们同次项的系数

13、相等.14、D【分析】把一个多项式化成几个整式积的形式,叫因式分解,根据因式分解的定义判断即可.【详解】A. ,属于整式的乘法运算,故本选项错误;B. ,属于整式的乘法运算,故本选项错误;C. 左边和右边不相等,故本选项错误;D. ,符合因式分解的定义,故本选项正确;故选:D【点睛】此题考查了因式分解的定义.解题的关键是掌握因式分解的定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解.15、C【分析】利用平方差公式、完全平方公式、提公因式法分解因式,分别进行判断即可.【详解】解:A、,故A错误;B、,故B错误;C、,故C正确;D、,故D错误;故选:C.【点睛】此题主要考

14、查了公式法分解因式,关键是熟练掌握平方差公式:a2-b2=(a+b)(a-b);完全平方公式:a22ab+b2=(ab)2.二、填空题1、2026【分析】利用平方差公式求得ab,将ab代入2021a+b2021(ab)即可.【详解】解:a+b2,a2b210,a2b2(a+b)(ab)2(ab)10,ab5,2021a+b2021(ab)2021(5)2026,故答案为:2026.【点睛】本题主要考查了用平方差公式进行因式分解,解题的关键是利用平方差公式求得ab,牢记平方差公式 .2、【分析】直接提取公因式整理即可.【详解】解:,故答案是:.【点睛】本题考查了提取公因式因式分解,解题的关键是找

15、准公因式.3、【分析】将当作整体,对式子先进行配方,然后利用平方差公式求解即可.【详解】解:原式.故答案是:.【点睛】此题考查了因式分解,涉及了平方差公式,解题的关键是掌握因式分解的方法,并将当作整体,得到平方差的形式.4、-36【分析】将所求代数式先提取公因式xy,再利用完全平方公式分解因式,得出,然后整体代入x+y,xy的值计算即可.【详解】解:=,=-36,故答案为:-36.【点睛】本题考查了因式分解方法的应用,代数式求值的方法,同时还隐含了整体的数学思想和正确运算的能力.5、【分析】根据平方差公式 进行因式分解,即可.【详解】解:,故答案为:【点睛】本题主要考查了因式分解的方法,解题的

16、关键是根据多项式的特点选合适的方法进行因式分解.6、54【分析】先利用平方差公式分解因式,再代入求值,即可.【详解】解:=293=54,故答案是:54.【点睛】本题主要考查代数式求值,掌握平方差公式,进行分解因式,是解题的关键.7、2022【分析】根据,得,然后局部运用因式分解的方法达到降次的目的,整体代入求解即可.【详解】故填“2022”.【点睛】本题主要考查了因式分解,善于运用因式分解的方法达到降次的目的,渗透整体代入的思想是解决本题的关键.8、7【分析】利用多项式乘以多项式法则,以及多项式相等的条件求出、的值,再代入计算可得.【详解】解:根据题意得:,则.故答案是:7.【点睛】此题考查了

17、因式分解十字相乘法,熟练掌握运算法则是解本题的关键.9、4a2-16=4(a-2)(a+2)【分析】任选两式作差,例如,4a2-16,运用平方差公式因式分解,即可解答.【详解】解:根据平方差公式,得,4a2-16,=(2a)2-42,=(2a-4)(2a+4),=4(a-2)(a+2)故4a2-16=4(a-2)(a+2),故答案为:4a2-16=4(a-2)(a+2).【点睛】本题考查了运用平方差公式因式分解:把一个多项式化为几个整式的积的形式;属于基础题.10、 【分析】第1个式子利用平方差公式分解即可;第1个式子先提取公因式,再利用完全平方公式继续分解即可.【详解】解:;故答案为:;.【

18、点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.三、解答题1、(1)2(x+3)(x-3);(2)3n(m-2)2;(3)(a+b-3)2;(4)(x+3)2(x-3)2【分析】(1)原式提取2,再利用平方差公式分解即可;(2)原式提取3n,再利用完全平方公式分解即可;(3)原式利用完全平方公式分解即可;(4)原式利用平方差公式及完全平方公式分解即可.【详解】解:(1)原式=2(x2-9)=2(x+3)(x-3);(2)原式=3n(m2-4m+4)=3n(m-2)2;(3)原式=(a+b-3

19、)2;(4)原式=(x2+9+6x)(x2+9-6x)=(x+3)2(x-3)2.【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.2、(1)n(n1) (n+1);(2)4x (x1) (x+1);(3)(2x- y) 2 (2x+ y) 2;(4)(x3) (x+3).【分析】(1)提公因式即可;(2)先提取公因式,再用平方差公式分解即可;(3)先用完全平方公式分解,再用平方差公式分解即可;(4)先去括号,合并同类项,再用平方差公式分解即可.【详解】解:(1)n2(n1)n(1n)= n(n1) (n+1);(2)4x34x=4x ( x21)= 4x (x1) (x+1);(3)16x48x2y2+y4=(4 x2- y2) 2=(2x- y) 2 (2x+ y) 2;(4)(x1)2+2(x5)= x22x+1+2x -10= x29=(x3) (x+3).【点睛】本题考查了多项式的因式分解,解题关键是熟记因式分解的步骤和公式,并熟练运用,注意:因式分解要彻底.3、【分析】先提取公因式,然后利用十字相乘和平方差公式分解因式即可.【详解】解:原式=.【点睛】本题主要考查了因式分解,解题的关键在于能够熟练掌握因式分解的方法.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁