《2021-2022学年最新京改版八年级数学下册第十四章一次函数重点解析练习题(名师精选).docx》由会员分享,可在线阅读,更多相关《2021-2022学年最新京改版八年级数学下册第十四章一次函数重点解析练习题(名师精选).docx(24页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、京改版八年级数学下册第十四章一次函数重点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若点A(x1,y1)和B(x2,y2) 都在一次函数y=(k)x+2(k为常数)的图像上,且当x1y2,则k的值
2、可能是( )Ak=0Bk=1Ck=2Dk=32、如图,直线l是一次函数的图象,下列说法中,错误的是( )A,B若点(1,)和点(2,)是直线l上的点,则C若点(2,0)在直线l上,则关于x的方程的解为D将直线l向下平移b个单位长度后,所得直线的解析式为3、已知点A(x,5)在第二象限,则点B(x,5)在( )A第一象限B第二象限C第三象限D第四象限4、平面直角坐标系中,点P(2022,a)(其中a为任意实数),一定不在( )A第一象限B第二象限C直线y=x上D坐标轴上5、函数y中,自变量x的取值范围是( )Ax3且x0Bx3Cx3Dx36、正比例函数y=mx的图象经过点(-1,2),那么这个函
3、数的解析式为( )Ay=xBy=xCy=2xDy=-2x7、如图,已知在ABC中,ABAC,点D沿BC自B向C运动,作BEAD于E,CFAD于F,则BE+CF的值y与BD的长x之间的函数图象大致是( )ABCD8、已知点(4,y1)、(2,y2)都在直线yx+b上,则y1和y2的大小关系是( )Ay1y2By1y2Cy1y2D无法确定9、点A(-3,1)到y轴的距离是()个单位长度A-3B1C-1D310、甲、乙两车分别从相距280km的A、B两地相向而行,乙车比甲车先出发1小时,并以各自的速度匀速行驶,途径C地,甲车到达C地停留1小时,因有事按原路原速返回A地乙车从B地直达A地,两车同时到达
4、A地甲、乙两车距各自出发地的路程y(千米)与甲车出发所用的时间x(小时)的关系如图,下列说法:乙车的速度是40千米/时;甲车从C返回A的速度为70千米/时;t3;当两车相距35千米时,乙车行驶的时间是2小时或6小时,其中正确的有( )A1个B2个C3个D4个第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在平面直角坐标系中,已知两条直线l1:y2x+m和l2:yx+n相交于P(1,3)请完成下列探究:(1)设l1和l2分别与x轴交于A,B两点,则线段AB的长为 _(2)已知直线xa(a1)分别与l1l2相交于C,D两点,若线段CD长为2,则a的值为 _2、一个长方体的底
5、面是一个边长为10cm的正方形,如果高为h(cm)时,体积为V(cm3),则V与h的关系为_;3、已知点在轴上,则_;点的坐标为_4、一个用电器的电阻是可调节的,其调节范围为:110220已知电压为220,这个用电器的功率P的范围是:_ w(P表示功率,R表示电阻,U表示电压,三者关系式为:PR=U)5、一次函数的图象经过第一、三、四象限,则k的取值范围是_三、解答题(5小题,每小题10分,共计50分)1、甲、乙两人沿同一直道从A地去B地,甲比乙早1min出发,乙的速度是甲的2倍在整个行程中,甲离A地的距离y1(单位:m)与时间x(单位:min)之间的函数关系如图所示(1)求乙离A地的距离y2
6、(单位:m)与时间x(单位:min)之间的函数关系式;并在图中画出乙离A地的距离y2(单位:m)与时间x(单位:min)之间的函数图象;(2)若甲比乙晚5min到达B地,求乙整个行程所用的时间2、如图,小红和小华分别从A,B两地到远离学校的博物馆(A地、B地、学校、博物馆在一条直线上),小红步行,小华骑车(1)小红、小华谁的速度快?(2)出发后几小时两人相遇?(3)A,B两地离学校分别有多远?3、A、B两地果园分别有苹果30吨和40吨,C、D两地分别需要苹果20吨和50吨已知从A地、B地到C地、D地的运价如下表:到C地到D地从A地果园运出每吨15元每吨9元从B地果园运出每吨10元每吨12元(1
7、)若从A地果园运到C地的苹果为10吨,则从A地果园运到D地的苹果为 吨,从B地果园运到C地的苹果为 吨,从B地果园运到D地的苹果为 吨,总运输费用为 元(2)若从A地果园运到C地的苹果为x吨,求从A、B两地将苹果运到C、D两地的运输总费用(3)能否设计一个运输方案,使得运费最少?如果能,请你写出你的方案,最少运费是多少?4、某家电销售商城电冰箱的销售价为每台元,空调的销售价为每台元,每台电冰箱的进价比每台空调的进价多元,商场用元购进电冰箱的数量与用元购进空调的数量相等(1)求每台电冰箱与空调的进价分别是多少?(2)现在商场准备一次购进这两种家电共台,设购进电冰箱台,这台家电的销售总利润元,要求
8、购进空调数量不超过电冰箱数量的倍,且购进电冰箱不多于台,请确定获利最大的方案以及最大利润(3)实际进货时,厂家对电冰箱出厂价下调元,若商店保持这两种家电的售价不变,请你根据以上信息及(2)中条件,设计出使这台家电销售总利润最大的进货方案5、红太阳大酒店客房部有三人间、双人间和单人间客房,收费数据如下表(例如三人间普通间客房每人每天收费50元)为吸引客源,在五一黄金周期间进行优惠大酬宾,凡团体入住一律五折优惠一个50人的旅游团在五月二号到该酒店住宿,租住了一些三人间、双人间普通客房,并且每个客房正好住满,一天一共花去住宿费1510元普通间(元/人/天)豪华间(元/人/天)贵宾间(元/人/天)三人
9、间50100500双人间70150800单人间1002001500(1)三人间、双人间普通客房各住了多少间?(2)设三人间共住了x人,则双人间住了 人,一天一共花去住宿费用y元表示,写出y与x的函数关系式;(3)在直角坐标系内画出这个函数图象;(4)如果你作为旅游团团长,你认为上面这种住宿方式是不是费用最少?为什么?-参考答案-一、单选题1、A【解析】【分析】利用一次函数y随x的增大而减小,可得,即可求解【详解】当x1y2一次函数y=(k)x+2的y随x的增大而减小k的值可能是0故选:A【点睛】本题考查了一次函数图象上点的坐标特征,解题关键是利用一次函数图象上点的坐标特征,求出2、B【解析】【
10、分析】根据一次函数图象的性质和平移的规律逐项分析即可【详解】解:A.由图象可知,故正确,不符合题意;B. -1,小华的速度快(2)由横坐标看出,出发后h两人相遇(3)由纵坐标看出A地距学校500m,B地距学校200m【点睛】本题考查了函数图象,观察函数图象的横坐标、纵坐标得出相关信息是解题关键3、(1)20,10,30,790;(2);(3)将A果园的苹果全部运到D地时,运费最少,最少运费为710元【解析】【分析】(1)由已知A、B果园和C、D两地的供需关系即可求得A、B果园运到C、D两地苹果的重量,再结合表中的运费计算即可(2)根据已知A、B果园和C、D两地的供需关系即可列出一元一次方程(3
11、)由(2)问所求运输总费用关系式,结合一次函数的性质即可得出将A果园的苹果全部运到D地时,运费最少,最少运费为710元【详解】解:(1)A、B两地果园分别有苹果30吨和40吨,C、D两地分别需要苹果20吨和50吨从A地果园运到D地的苹果为吨,从B地果园运到C地的苹果为吨,从B地果园运到D地的苹果为吨,总运费为元;(2)A果园运到C地的苹果为x吨,则从A果园运到D地的苹果为吨;从B果园运到C地的苹果为吨,从B果园运到D地的苹果为吨;总运输费用为:(3)由(2)可知从A地果园运到C地的苹果为x吨时总运费,且为一次函数且k0,y随x的增大而增大当x=0时,取最小值将x=0代入即送往C地的A果园苹果为
12、0,将A果园的苹果全部运到D地时,运费最少,最少运费为710元【点睛】本题考查了一次函数的分配问题,就是在求函数的最值,我们应先求出函数的表达式,并确定其增减性,再根据题目条件确定出自变量的取值范围,然后结合增减性确定出最大值或最小值4、(1)每台空调的进价为元,则每台电冰箱的进价为元;(2)当购进电冰箱台,空调台获利最大,最大利润为元;(3)当时,购进电冰箱台,空调台销售总利润最大;当时,各种方案利润相同;当时,购进电冰箱台,空调台销售总利润最大【解析】【分析】设每台空调的进价为元,则每台电冰箱的进价为元,根据商城用元购进电冰箱的数量与用元购进空调的数量相等”,列出方程,即可解答;设购进电冰
13、箱台,这台家电的销售总利润为元,则,由题意:购进空调数量不超过电冰箱数量的倍,且购进电冰箱不多于台,列出不等式组,解得,再由为正整数,的,即合理的方案共有种,然后由一次函数的性质,确定获利最大的方案以及最大利润;当电冰箱出厂价下调元时,则利润,分三种情况讨论:当;当时;当;利用一次函数的性质,即可解答【详解】解:设每台空调的进价为元,则每台电冰箱的进价为元,根据题意得:,解得:,经检验,是原方程的解,且符合题意,答:每台空调的进价为元,则每台电冰箱的进价为元设购进电冰箱台,这台家电的销售总利润为元,则,根据题意得:,解得:,为正整数,合理的方案共有种,即电冰箱台,空调台;电冰箱台,空调台;电冰
14、箱台,空调台;电冰箱台,空调台;电冰箱台,空调台;电冰箱台,空调台;电冰箱台,空调台;,随的增大而减小,当时,有最大值,最大值为:元,答:当购进电冰箱台,空调台获利最大,最大利润为元当厂家对电冰箱出厂价下调元,若商店保持这两种家电的售价不变,则利润,当,即时,随的增大而增大,当时,这台家电销售总利润最大,即购进电冰箱台,空调台;当时,各种方案利润相同;当,即时,随的增大而减小,当时,这台家电销售总利润最大,即购进电冰箱台,空调台;答:当时,购进电冰箱台,空调台销售总利润最大;当时,各种方案利润相同;当时,购进电冰箱台,空调台销售总利润最大【点睛】本题考查了列分式方程的应用、一元一次不等式组的应
15、用以及一次函数的应用,找准数量关系,正确列出分式方程和一元一次不等式组是解题的关键5、(1)三人间8间,双人间13间;(2)(50x),y10x+1750(0x50,且x为整数);(3)见解析;(4)不是费用最少的,理由是y随x的增大而减小,所以最小值是x48时费用1270元【解析】【分析】分别设三人间和双人间为m、n,根据人数和钱数列方程组求解;根据收费列出表达式整理即可;因为x为人数,并且房间刚好住满所以应该是3的倍数,又剩下的人住双人间所以是2的倍数,因此x应该为6的倍数【详解】解:(1)设租住三人间m间,双人间n间,根据题意,解得,三人间8间,双人间13间;(2)双人间住了(50x)人,根据题意y50x+70(50x)50%即y10x+1750(0x50,且x为整数);(3)因为两种房间正好住满所以x的值为3的倍数而(50x)还是2的倍数因此,所作图象上一些点:(0,1750),(6,1690),(12,1630),(18,1570),(24,1510),(30,1450),(36,1390),(42,1330),(48,1270)(4)不是费用最少的,理由是y随x的增大而减小,所以最小值是x48时费用1270元【点睛】本题主要考查二元一次方程组的实际应用,一次函数的实际应用,解题的关键在于能正确理解题意