《2021-2022学年人教版八年级数学下册第十八章-平行四边形专题训练练习题.docx》由会员分享,可在线阅读,更多相关《2021-2022学年人教版八年级数学下册第十八章-平行四边形专题训练练习题.docx(39页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、人教版八年级数学下册第十八章-平行四边形专题训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在菱形中,P是对角线上一动点,过点P作于点E于点F若菱形的周长为24,面积为24,则的值为( )A4B
2、C6D2、平行四边形中,则的度数是( )ABCD3、如图菱形ABCD,对角线AC,BD相交于点O,若BD8,AC6,则AB的长是( )A5B6C8D104、如图所示,ABCD,ADBC,则图中的全等三角形共有( )A1对B2对C3对D4对5、如图,在矩形ABCD中,点E是BC的中点,连接AE,点F是AE的中点,连接DF,若AB9,AD,则四边形CDFE的面积是()ABCD546、在锐角ABC中,BAC60,BN、CM为高,P为BC的中点,连接MN、MP、NP,则结论:NPMP;AN:ABAM:AC;BN2AN;当ABC60时,MNBC,一定正确的有( )ABCD7、如图,菱形ABCD的边长为6
3、cm,BAD60,将该菱形沿AC方向平移2cm得到四边形ABCD,AD交CD于点E,则点E到AC的距离为()A1BC.2D28、如图,矩形ABCD中,DEAC于E,若ADE2EDC,则BDE的度数为( )A36B30C27D189、如图所示,公路AC、BC互相垂直,点M为公路AB的中点,为测量湖泊两侧C、M两点间的距离,若测得AB的长为6km,则M、C两点间的距离为()A2.5kmB4.5kmC5kmD3km10、如图,四边形ABCD是平行四边形,下列结论中错误的是( )A当ABCD是矩形时,ABC90B当ABCD是菱形时,ACBDC当ABCD是正方形时,ACBDD当ABCD是菱形时,ABAC
4、第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,正方形ABCD的面积为18,ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为 _2、如图,在正方形ABCD中,AB4,E为对角线AC上与A,C不重合的一个动点,过点E作EFAB于点F,EGBC于点G,连接DE,FG,下列结论:DEFG;DEFG;BFGADE;FG的最小值为3其中正确结论的序号为_3、已知长方形ABCD中,AB4,BC10,M为BC中点,P为AD上的动点,则以B、M、P为顶点组成的等腰三角形的底边长是_4、如图,在矩形ABCD中,对角线AC,BD
5、相交于点O,AB6,DAC60,点F在线段AO上从点A至点O运动,连接DF,以DF为边作等边三角形DFE,点E和点A分别位于DF两侧,下列结论:BDEEFC;EDEC;ADFECF;点E运动的路程是2,其中正确结论的序号为 _5、如图,正方形纸片ABCD的边长为12,E是边CD上一点,连接AE折叠该纸片,使点A落在AE上的G点,并使折痕经过点B,得到折痕BF,点F在AD上若,则GE的长为_三、解答题(5小题,每小题10分,共计50分)1、如图,在平行四边形中,E是上一点(1)用尺规完成以下基本操作:在下方作,使得,交于点F(保留作图痕迹,不写作法)(2)在(1)所作的图形中,已知,求的度数2、
6、如图1,正方形ABCD的边长为a,E为边CD上一动点(点E与点C、D不重合),连接AE交对角线BD于点P,过点P作PFAE交BC于点F(1)求证:PAPF;(2)如图2,过点F作FQBD于Q,在点E的运动过程中,PQ的长度是否发生变化?若不变,求出PQ的长;若变化,请说明变化规律(3)请写出线段AB、BF、BP之间满足的数量关系,不必说明理由3、综合与实践(1)如图1,在正方形ABCD中,点M、N分别在AD、CD上,若MBN45,则MN,AM,CN的数量关系为 (2)如图2,在四边形ABCD中,BCAD,ABBC,A+C180,点M、N分别在AD、CD上,若MBNABC,试探索线段MN、AM、
7、CN有怎样的数量关系?请写出猜想,并给予证明(3)如图3,在四边形ABCD中,ABBC,ABC+ADC180,点M、N分别在DA、CD的延长线上,若MBNABC,试探究线段MN、AM、CN的数量关系为 4、如图,在平面直角坐标系中,ABC三个顶点的坐标分别为A(1,1)、B(4,2)、C(3,5)(1)请画出ABC关于x轴的对称图形A1B1C1;(2)借助网格,利用无刻度直尺画出线段CD,使CD平分ABC的面积(保留确定点D的痕迹)试卷第39页,共32页5、如图,ABC为等边三角形,点D为线段BC上一点,将线段AD以点A为旋转中心顺时针旋转60得到线段AE,连接BE,点D关于直线BE的对称点为
8、F,BE与DF交于点G,连接DE,EF(1)求证:BDF30(2)若EFD45,AC+1,求BD的长;(3)如图2,在(2)条件下,以点D为顶点作等腰直角DMN,其中DNMN,连接FM,点O为FM的中点,当DMN绕点D旋转时,求证:EO的最大值等于BC-参考答案-一、单选题1、A【解析】【分析】连接BP,通过菱形的周长为24,求出边长,菱形面积为24,求出的面积,然后利用面积法,即可求出的值【详解】解:如图所示,连接BP,菱形ABCD的周长为24,又菱形ABCD的面积为24, ,故选:A【点睛】本题主要考查菱形的性质,解题关键在于添加辅助线,通过面积法得出等量关系2、B【解析】【分析】根据平行
9、四边形对角相等,即可求出的度数【详解】解:如图所示,四边形是平行四边形,故:B【点睛】本题考查了平行四边形的性质,解题的关键是掌握平行四边形的性质3、A【解析】【分析】由菱形的性质可得OA=OC=3,OB=OD=4,AOBO,由勾股定理求出AB【详解】解:四边形ABCD是菱形,AC=6,BD=8,OA=OC=3,OB=OD=4,AOBO,在RtAOB中,由勾股定理得:,故选:A【点睛】本题考查了菱形的性质、勾股定理等知识;熟练掌握菱形对角线互相垂直且平分的性质是解题的关键4、D【解析】【分析】根据平行四边形的判定与性质,求解即可【详解】解:ABCD,ADBC四边形为平行四边形,、又,、图中的全
10、等三角形共有4对故选:D【点睛】此题考查了平行四边形的判定与性质,全等三角形的判定与性质,解题的关键是掌握平行四边形的判定与性质5、C【解析】【分析】过点F作,分别交于M、N,由F是AE中点得,根据,计算即可得出答案【详解】如图,过点F作,分别交于M、N,四边形ABCD是矩形,点E是BC的中点,F是AE中点,故选:C【点睛】本题考查矩形的性质与三角形的面积公式,掌握是解题的关键6、C【解析】【分析】利用直角三角形斜边上的中线的性质即可判定正确;利用含30度角的直角三角形的性质即可判定正确,由勾股定理即可判定错误;由等边三角形的判定及性质、三角形中位线定理即可判定正确【详解】CM、BN分别是高C
11、MB、BNC均是直角三角形点P是BC的中点PM、PN分别是两个直角三角形斜边BC上的中线故正确BAC=60ABN=ACM=90BAC=30AB=2AN,AC=2AMAN:AB=AM:AC=1:2即正确在RtABN中,由勾股定理得:故错误当ABC=60时,ABC是等边三角形CMAB,BNACM、N分别是AB、AC的中点MN是ABC的中位线MNBC故正确即正确的结论有故选:C【点睛】本题考查了直角三角形斜边上中线的性质,含30度角的直角三角形的性质,等边三角形的判定及性质,勾股定理,三角形中位线定理等知识,掌握这些知识并正确运用是解题的关键7、C【解析】【分析】根据题意连接BD,过点E作EFAC于
12、点F,根据菱形的性质可以证明三角形ABD是等边三角形,根据平移的性质可得ADAE,可得,进而求出AE,再利用30度角所对直角边等于斜边的一半即可得出结论【详解】解:如图,连接BD,过点E作EFAC于点F,四边形ABCD是菱形,AD=AB,BDAC,BAD=60,三角形ABD是等边三角形,菱形ABCD的边长为6cm,AD=AB=BD=6cm,AG=GC=3 (cm),AC=6 (cm),AA=2 (cm),AC=4 (cm),ADAE,AE=4(cm),EAF=DAC=DAB=30,EF=AE=2(cm)故选:C【点睛】本题考查菱形的性质以及等边三角形的判定与性质和平移的性质,解决本题的关键是掌
13、握菱形的性质8、B【解析】【分析】根据已知条件可得以及的度数,然后求出各角的度数便可求出【详解】解:在矩形ABCD中,故选:B【点睛】题目主要考查矩形的性质,三角形内角和及等腰三角形的性质,理解题意,综合运用各个性质是解题关键9、D【解析】【详解】根据直角三角形斜边上的中线性质得出CMAB,即可求出CM【解答】解:公路AC,BC互相垂直,ACB90,M为AB的中点,CMAB,AB6km,CM3km,即M,C两点间的距离为3km,故选:D【点睛】本题考查了直角三角形的性质,解题关键是掌握直角三角形斜边上的中线的性质:直角三角形斜边上的中线等于斜边的一半10、D【解析】【分析】由矩形的四个角是直角
14、可判断A,由菱形的对角线互相垂直可判断B,由正方形的对角线相等可判断C,由菱形的四条边相等可判断D,从而可得答案.【详解】解:当ABCD是矩形时,ABC90,正确,故A不符合题意;当ABCD是菱形时,ACBD,正确,故B不符合题意;当ABCD是正方形时,ACBD,正确,故C不符合题意;当ABCD是菱形时,ABBC,故D符合题意;故选D【点睛】本题考查的是矩形,菱形,正方形的性质,熟练的记忆矩形,菱形,正方形的性质是解本题的关键.二、填空题1、【解析】【分析】由正方形的对称性可知,PBPD,当B、P、E共线时PD+PE最小,求出BE即可【详解】解:正方形中B与D关于AC对称,PBPD,PD+PE
15、PB+PEBE,此时PD+PE最小,正方形ABCD的面积为18,ABE是等边三角形,BE3,PD+PE最小值是3,故答案为:3【点睛】本题考查轴对称求最短距离,熟练掌握正方形的性质是解题的关键2、【解析】【分析】连接BE,可得四边形EFBG为矩形,可得BEFG;由AEBAED可得DEBE,所以DEFG;由矩形EFBG可得OFOB,则OBFOFB;由OBFADE,则OFBADE;由四边形ABCD为正方形可得BAD90,即AHD+ADH90,所以AHD+OFH90,即FMH90,可得DEFG;由中的结论可得BFGADE;由于点E为AC上一动点,当DEAC时,根据垂线段最短可得此时DE最小,最小值为
16、2,由知FGDE,所以FG的最小值为2【详解】解:连接BE,交FG于点O,如图,EFAB,EGBC,EFBEGB90ABC90,四边形EFBG为矩形FGBE,OBOFOEOG四边形ABCD为正方形,ABAD,BACDAC45在ABE和ADE中,ABEADE(SAS)BEDEDEFG正确;延长DE,交FG于M,交FB于点H,ABEADE,ABEADE由知:OBOF,OFBABEOFBADEBAD90,ADE+AHD90OFB+AHD90即:FMH90,DEFG正确;由知:OFBADE即:BFGADE正确;点E为AC上一动点,根据垂线段最短,当DEAC时,DE最小ADCD4,ADC90,AC4DE
17、AC2由知:FGDE,FG的最小值为2,错误综上,正确的结论为:故答案为:【点睛】本题考查了全等三角形的性质与判定,正方形的性质,勾股定理,垂线段最短,掌握正方形的性质是解题的关键3、5或或【解析】【分析】分三种情况:当BP=PM时,点P在BM的垂直平分线上,取BM的中点N,过点N作NPBM交AD于P,则四边形ABNP是矩形,得AB=PN=4,根据勾股定理即可求解;当BM=PM=5时,当PMB为锐角如图2时,则四边形ABNP是矩形,得AB=PN=4,根据勾股定理可得MN=3,从而BN=2,再由勾股定理可得BP的长;当BM=PM=5时,当PMB为钝角如图3时,则四边形ABNP是矩形,得AB=PN
18、=4,根据勾股定理MN=3,从而BN=8,再由勾股定理可得BP的长;即可求解【详解】解:BC10,M为BC中点,BM=5,当BMP为等腰三角形时,分三种情况:当BP=PM时,点P在AM的垂直平分线上,取BM的中点N,过点N作NPAD交AD于P,如图1所示:则PBM是等腰三角形底边BM的长为5当BM=PM=5时,当PMB为锐角如图2时,则四边形ABNP是矩形,PN=AB=4,MN= 在RtPBN中,当BM=PM=5时,当PMB为钝角如图3时,则四边形ABNP是矩形,得AB=PN=4,同理可得 在RtPBN中,综上,以B、M、P为顶点组成的等腰三角形的底边长是:5 或或故答案为:5 或或【点睛】本
19、题考查了矩形的性质、勾股定理以及分类讨论等知识,熟练掌握矩形的性质,进行分类讨论是解题的关键4、【解析】【分析】根据DAC60,ODOA,得出OAD为等边三角形,再由DFE为等边三角形,得DOADEF60,再利用角的等量代换,即可得出结论正确;连接OE,利用SAS证明DAFDOE,再证明ODEOCE,即可得出结论正确;通过等量代换即可得出结论正确;延长OE至,使OD,连接,通过DAFDOE,DOE60,可分析得出点F在线段AO上从点A至点O运动时,点E从点O沿线段运动到,从而得出结论正确;【详解】解:设与的交点为如图所示:DAC60,ODOA,OAD为等边三角形,DOADAOADO =60,D
20、FE为等边三角形,DEF60,DOADEF60,故结论正确;如图,连接OE,在DAF和DOE中,DAFDOE(SAS),DOEDAF60,COD180AOD120,COECODDOE1206060,COEDOE,在ODE和OCE中,ODEOCE(SAS),EDEC,OCEODE,故结论正确;ODEADF,ADFOCE,即ADFECF,故结论正确;如图,延长OE至,使OD,连接,DAFDOE,DOE60,点F在线段AO上从点A至点O运动时,点E从点O沿线段运动到,设,则在中,即解得:ODAD,点E运动的路程是,故结论正确;故答案为:【点睛】本题主要考查了几何综合,其中涉及到了等边三角形判定及性质
21、,相似三角形的判定及性质,全等三角形的性质及判定,三角函数的比值关系,矩形的性质等知识点,熟悉掌握几何图形的性质合理做出辅助线是解题的关键5、#【解析】【分析】由折叠及轴对称的性质可知,ABFGBF,BF垂直平分AG,先证ABFDAE,推出AF的长,再利用勾股定理求出BF的长,最后在RtABF中利用面积法可求出AH的长,可进一步求出AG的长,GE的长【详解】解:四边形ABCD为正方形,AB=AD=12,BAD=D=90,由折叠及轴对称的性质可知,ABFGBF,BF垂直平分AG,BFAE,AH=GH,BAH+ABH=90,又FAH+BAH=90,ABH=FAH,ABFDAE(ASA),AF=DE
22、=5,在RtABF中,BF=13,SABF=ABAF=BFAH,125=13AH,AH=,AG=2AH=,AE=BF=13,GE=AE-AG=13-=,故答案为:【点睛】本题考查了正方形的性质,轴对称的性质,全等三角形的判定与性质,勾股定理,面积法求线段的长度等,解题关键是能够灵活运用正方形的性质和轴对称的性质三、解答题1、(1)见解析;(2)【分析】(1)延长,在射线上截取两点,使得,作的垂线,交于点,在上截取,作的中垂线,交于点,则即为所求;(2)根据三角形的外角性质以及平行线的性质即可求得的度数【详解】(1)如图所示,根据作图可知,四边形是平行四边形,四边形是平行四边形则即为所求;(2)
23、,由(1)可知【点睛】本题考查了尺规作图-作垂线,平行四边形的性质,三角形的外角性质,平行线的性质,掌握基本作图是解题的关键2、(1)见解析;(2)PQ的长不变,见解析;(3)AB+BFPB【分析】(1)连接PC,由正方形的性质得到,然后依据全等三角形的判定定理证明,由全等三角形的性质可知,接下来利用四边形的内角和为360可证明,于是得到,故此可证明;(2)连接AC交BD于点O,依据正方形的性质可知为等腰直角三角形,于是可求得AO的长,接下来,证明,依据全等三角形的性质可得到;(3)过点P作,垂足分别为M,N,首先证明为等腰直角三角形于是得到,由角平分线的性质可得到,然后再依据直角三角形全等的
24、证明方法证明可得到,于是将可转化为的长【详解】解:(1)证明:连接PC,如图所示:ABCD为正方形,在和中,;(2)PQ的长不变理由:连接AC交BD于点O,如图所示:,又四边形ABCD为正方形,在和中,;(3)如图所示:过点P作,垂足分别为M,N四边形ABCD为正方形,BD平分,在和中,【点睛】题目主要考查正方形的性质,全等三角形的判定和性质,勾股定理解三角形,等腰三角形的性质等,理解题意,作出相应辅助线,综合运用这些性质定理是解题关键3、(1)MN=AM+CN;(2)MN=AM+CN,理由见解析;(3)MN=CN-AM,理由见解析【分析】(1)把ABM绕点B顺时针旋转使AB边与BC边重合,则
25、AM=CM,BM=BM,A=BCM,ABM=MBC,可得到点M、C、N三点共线,再由MBN=45,可得MBN=MBN,从而证得NBMNBM,即可求解;(2)把ABM绕点B顺时针旋转使AB边与BC边重合,则AM=CM,BM=BM,A=BCM,ABM=MBC,由A+C180,可得点M、C、N三点共线,再由MBNABC,可得到MBN=MBN,从而证得NBMNBM,即可求解;(3)在NC上截取C M=AM,连接B M,由ABC+ADC180,可得BAM=C,再由ABBC,可证得ABMCB M,从而得到AM=C M,BM=B M,ABM=CB M,进而得到MA M=ABC,再由MBNABC,可得MBNM
26、BN,从而得到NBMNBM,即可求解【详解】解:(1)如图,把ABM绕点B顺时针旋转使AB边与BC边重合,则AM=CM,BM=BM,A=BCM,ABM=MBC,在正方形ABCD中,A=BCD=ABC=90,AB=BC ,BCM+BCD=180,点M、C、N三点共线,MBN=45,ABM+CBN=45,MBN=MBC+CBN=ABM+CBN=45,即MBN=MBN,BN=BN,NBMNBM,MN= MN,MN= MC+CN,MN= MC+CN=AM+CN;(2)MN=AM+CN;理由如下:如图,把ABM绕点B顺时针旋转使AB边与BC边重合,则AM=CM,BM=BM,A=BCM,ABM=MBC,A
27、+C180,BCM+BCD=180,点M、C、N三点共线,MBNABC,ABM+CBN=ABCMBN,CBN+MBC =MBN,即MBN=MBN,BN=BN,NBMNBM,MN= MN,MN= MC+CN,MN= MC+CN=AM+CN;(3)MN=CN-AM,理由如下:如图,在NC上截取C M=AM,连接B M,在四边形ABCD中,ABC+ADC180,C+BAD=180,BAM+BAD=180,BAM=C,ABBC,ABMCB M,AM=C M,BM=B M,ABM=CB M,MA M=ABC,MBNABC,MBNMA M=MBN,BN=BN,NBMNBM,MN= MN,MN=CN-C M
28、, MN=CN-AM故答案是:MN=CN-AM【点睛】本题主要考查了正方形的性质,全等三角形的性质和判定,图形的旋转,根据题意做适当辅助线,得到全等三角形是解题的关键4、(1)见解析;(2)见解析;【分析】(1)根据关于轴对称的点的坐标变化作图即可;(2)利用格点特征以及矩形对角线互相平分且相等的性质取中点从而求解【详解】解:(1)如图所示,A1B1C1即为所求,(2)连接格点,交于点,已知、为矩形的对角线,连接,根据矩形的性质可得点为线段的中点,即为所求【点睛】本题考查了网格作图中的轴对称变换和矩形的性质,解题的关键是掌握并运用相关性质进行求解5、(1)见解析;(2)2;(3)见解析【分析】
29、(1)由ABC是等边三角形,可得ABC=60,由D、F关于直线BE对称,得到BF=BD,则BFD=BDF,由三角形外角的性质得到BFD+BDF=ABD,则BDF=BFD=30;(2)设,由D、F关于直线BE对称,得到BGD=BGF=90,EF=ED,EG=DG,由含30度角的直角三角形的性质和勾股定理得,证明EABDAC得到,再由,得到,由此求解即可;(3)连接OG,先求出,证明OG是三角形DMF的中位线,得到,再根据两点之间线段最短可知,则OE的最大值等于BC【详解】解:(1)ABC是等边三角形,ABC=60,D、F关于直线BE对称,BF=BD,BFD=BDF,BFD+BDF=ABD,BDF
30、=BFD=30;(2)设,D、F关于直线BE对称,BGD=BGF=90,EF=ED,EDG=EFG=45,EG=DG,BDG=30,由旋转的性质可得AE=AD,EAD=BAC=60,EAB+BAD=CAD+BAD,即EAB=DAC,又AB=AC,EABDAC(SAS),;(3)如图所示,连接OG,在等腰直角三角形DMN中,D、F关于直线BE对称,G为DF的中点,又O为FM的中点,OG是三角形DMF的中位线,由(2)可得,根据两点之间线段最短可知,OE的最大值等于BC【点睛】本题主要考查了等边三角形的性质,轴对称的性质,全等三角形的性质与判定,勾股定理,含30度角的直角三角形性质,三角形中位线定理,两点之间线段最短等等,解题的关键在于能够熟练掌握轴对称的性质和等边三角形的性质