2021-2022学年2022年沪科版九年级数学下册期末专项测评试题-卷(Ⅱ)(含答案及解析).docx

上传人:知****量 文档编号:28148005 上传时间:2022-07-26 格式:DOCX 页数:29 大小:891.98KB
返回 下载 相关 举报
2021-2022学年2022年沪科版九年级数学下册期末专项测评试题-卷(Ⅱ)(含答案及解析).docx_第1页
第1页 / 共29页
2021-2022学年2022年沪科版九年级数学下册期末专项测评试题-卷(Ⅱ)(含答案及解析).docx_第2页
第2页 / 共29页
点击查看更多>>
资源描述

《2021-2022学年2022年沪科版九年级数学下册期末专项测评试题-卷(Ⅱ)(含答案及解析).docx》由会员分享,可在线阅读,更多相关《2021-2022学年2022年沪科版九年级数学下册期末专项测评试题-卷(Ⅱ)(含答案及解析).docx(29页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、 线 封 密 内 号学级年名姓 线 封 密 外 2022年沪科版九年级数学下册期末专项测评试题 卷() 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,DC是O的直径,弦ABCD于M,则下列结论不一定

2、成立的是()AAM=BMBCM=DMCD2、平面直角坐标系中点关于原点对称的点的坐标是( )ABCD3、下列说法错误的是( )A必然事件发生的概率是1B不可能事件发生的概率为0C随机事件发生的可能性越大,它的概率就越接近1D概率很小的事件不可能发生4、同时抛掷两枚质地均匀的硬币,两枚硬币全部正面向上的概率是( )ABCD5、在不透明口袋内装有除颜色外完全相同的5个小球,其中红球2个,白球3个搅拌均匀后,随机抽取一个小球,是红球的概率为( )ABCD6、中国有悠久的金石文化,印信是金石文化的代表之一南北朝时期的官员独孤信的印信是迄今发现的中国古代唯一一枚楷书印它的表面均由正方形和等边三角形组成(

3、如图1),可以看成图2所示的几何体从正面看该几何体得到的平面图形是( )ABCD7、下列事件是确定事件的是( )A方程有实数根B买一张体育彩票中大奖C抛掷一枚硬币正面朝上D上海明天下雨8、下列判断正确的是( )A明天太阳从东方升起是随机事件;B购买一张彩票中奖是必然事件;C掷一枚骰子,向上一面的点数是6是不可能事件;D任意画一个三角形,其内角和是360是不可能事件; 线 封 密 内 号学级年名姓 线 封 密 外 9、下列事件是随机事件的是( )A抛出的篮球会下落B经过有交通信号灯的路口,遇到红灯C任意画一个三角形,其内角和是D400人中有两人的生日在同一天10、下列事件中,是必然事件的是()A

4、实心铁球投入水中会沉入水底B车辆随机到达一个路口,遇到红灯C打开电视,正在播放大国工匠D抛掷一枚硬币,正面向上第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在菱形ABCD中,AB6,E为AB的中点,连结AC,DE交于点F,连结BF记ABC(0180)(1)当60时,则AF的长是 _;(2)当在变化过程中,BF的取值范围是 _2、如图,已知O的半径为2,弦AB的长度为2,点C是O上一动点若ABC为等腰三角形,则BC2为 _3、如图,在中,分别以、边为直径作半圆,图中阴影部分在数学史上称为“希波克拉底月牙”当,时,则阴影部分的面积为_4、一个五边形共有_条对角线5、点(2

5、,-3)关于原点的对称点的坐标为_三、解答题(5小题,每小题10分,共计50分)1、在ABC与DEF中,BACEDF90,且ABAC,DEDF(1)如图1,若点D与A重合,AC与EF交于P,且CAE30,CE,求EP的长;(2)如图2,若点D与C重合,EF与BC交于点M,且BMCM,连接AE,且CAEMCE,求证:AE+MFCE;(3)如图3,若点D与A重合,连接BE,且ABEABC,连接BF,CE,当BF+CE最小时,直接出的值 线 封 密 内 号学级年名姓 线 封 密 外 2、如图,点A是外一点,过点A作出的一条切线(使用尺规作图,作出一条即可,不要求写出作法,不要求证明,但要保留作图痕迹

6、)3、在太原市创建国家文明城市的过程中,东东和南南积极参加志愿者活动,有下列三个志愿者工作岗位供他们选择:(每个工作岗位仅能让一个人工作)2个清理类岗位:清理花坛卫生死角;清理楼道杂物(分别用,表示);1个宣传类岗位:垃圾分类知识宣传(用表示)(1)东东从三个岗位中随机选取一个报名,恰好选择清理类岗位的概率为_(2)若东东和南南各随机从三个岗位中选取一个报名,请你利用画树状图法或列表法求出他们恰好都选择同一类岗位的概率4、如图,已知为的直径,切于点C,交的延长线于点D,且(1)求的大小;(2)若,求的长5、如图,内接于,BC是的直径,D是AC延长线上一点(1)请用尺规完成基本作图:作出的角平分

7、线交于点P(保留作图痕迹,不写作法)(2)在(1)所作的图形中,过点P作,垂足为E则PE与有怎样的位置关系?请说明理由-参考答案-一、单选题1、B【分析】根据垂径定理“垂直于弦的直径平分这条弦,并且平分弦所对的两条弧”进行判断即可得【详解】解:弦ABCD,CD过圆心O,AM=BM,即选项A、C、D选项说法正确,不符合题意,当根据已知条件得CM和DM不一定相等,故选B【点睛】本题考查了垂径定理,解题的关键是掌握垂径定理2、B 线 封 密 内 号学级年名姓 线 封 密 外 【分析】根据关于原点对称的两个点,横坐标、纵坐标分别互为相反数,即可求解【详解】解:平面直角坐标系中点关于原点对称的点的坐标是

8、故选B【点睛】本题考查了关于原点对称的点的特征,掌握关于原点对称的两个点,横坐标、纵坐标分别互为相反数是解题的关键3、D【分析】根据概率的意义分别判断后即可确定正确的选项【详解】解:A. 必然事件发生的概率是1,故该选项正确,不符合题意;B. 不可能事件发生的概率是0,故该选项正确,不符合题意;C. 随机事件发生的可能性越大,它的概率就越接近1,故该选项正确,不符合题意;D. 概率很小的事件也可能发生,故该选项不正确,符合题意;故选D【点睛】本题考查概率的意义,理解概率的意义反映的只是这一事件发生的可能性的大小:必然发生的事件发生的概率为1,随机事件发生的概率大于0且小于1,不可能事件发生的概

9、率为04、A【分析】首先利用列举法可得所有等可能的结果有:正正,正反,反正,反反,然后利用概率公式求解即可求得答案【详解】解:抛掷两枚质地均匀的硬币,两枚硬币落地后的所有等可能的结果有:正正,正反,反正,反反,正面都朝上的概率是:.故选A【点睛】本题考查了列举法求概率的知识此题比较简单,注意在利用列举法求解时,要做到不重不漏,注意概率=所求情况数与总情况数之比5、A【分析】用红球的个数除以所有球的个数即可求得抽到红球的概率【详解】解:共有5个球,其中红球有2个,P(摸到红球)=,故选:A【点睛】此题主要考查概率的意义及求法用到的知识点为:概率=所求情况数与总情况数之比6、D【分析】找到从正面看

10、所得到的图形即可【详解】 线 封 密 内 号学级年名姓 线 封 密 外 解:从正面看是一个正六边形,里面有2个矩形,故选D【点睛】本题灵活考查了三种视图之间的关系以及视图和实物之间的关系,同时还考查了对图形的想象力,难度适中7、A【分析】随机事件:是指在一定条件下可能发生也可能不发生的事件,根据随机事件的分类对各个选项逐个分析,即可得到答案【详解】解:方程无实数根,因此“方程有实数”是不可能事件,所以选项符合题意;B买一张体育彩票可能中大奖,有可能不中,因此是随机事件,所以选项B不符合题意;C抛掷一枚硬币,可能正面朝上,有可能反面朝上,因此是随机事件,所以选项C不符合题意;D上海明天可能下雨,

11、有可能不下雨,因此是随机事件,所以选项D不符合题意;故选:【点睛】本题考查的是确定事件与随机事件的概念,掌握确定事件分为必然事件,不可能事件,及随机事件的概念是解题的关键8、D【详解】解:A、明天太阳从东方升起是必然事件,故本选项错误,不符合题意;B、购买一张彩票中奖是随机事件,故本选项错误,不符合题意;C、掷一枚骰子,向上一面的点数是6是随机事件,故本选项错误,不符合题意;D、任意画一个三角形,其内角和是360是不可能事件,故本选项正确,符合题意;故选:D【点睛】本题考查的是对必然事件的概念的理解,熟练掌握必然事件指在一定条件下一定发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也

12、可能不发生的事件是解题的关键9、B【分析】根据事件的确定性和不确定性,以及随机事件的含义和特征,逐项判断即可【详解】A.抛出的篮球会下落是必然事件,故此选项不符合题意;B.经过有交通信号灯的路口,遇到红灯是随机事件,故此选项符合题意; C.任意画一个三角形,其内角和是是不可能事件,故此选项不符合题意;D. 400人中有两人的生日在同一天是必然事件,故此选项不符合题意;故选B【点睛】此题主要考查了事件的确定性和不确定性,要熟练掌握,解答此题的关键是要明确:事件分为确定事件和不确定事件(随机事件),确定事件又分为必然事件和不可能事件10、A【分析】根据必然事件、不可能事件、随机事件的概念进行判断即

13、可【详解】解:A、实心铁球投入水中会沉入水底,是必然事件,该选项符合题意;B、车辆随机到达一个路口,遇到红灯,是随机事件,该选项不合题意; 线 封 密 内 号学级年名姓 线 封 密 外 C、打开电视,正在播放大国工匠,是随机事件,该选项不合题意;D、抛掷一枚硬币,正面向上,是随机事件,该选项不合题意;故选:A【点睛】本题考查的是必然事件、不可能事件、随机事件的概念必然事件指在一定条件下一定发生的事件不可能事件是指在一定条件下,一定不发生的事件不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件二、填空题1、2 【分析】(1)证明是等边三角形,进而即可求得;(2)过点作,交于点,以为

14、圆心长度为半径作半圆,交的延长延长线于点,证明在半圆上, 进而即可求得范围【详解】(1)如图,四边形是菱形,是等边三角形是的中点即故答案为:2(2)如图,过点作,交于点,以为圆心长度为半径作半圆,交的延长延长线于点,四边形是菱形, 线 封 密 内 号学级年名姓 线 封 密 外 在以为圆心长度为半径的圆上,又ABC(0180)在半圆上,最小值为最大值为故答案为:【点睛】本题考查了相似三角形的性质与判定,点与圆的位置关系求最值问题,掌握相似三角形的性质与判定是解题的关键2、4或12或【分析】分三种情况讨论:当ABBC时、当ABAC时、当ACBC时,根据垂径定理和勾股定理即可求解【详解】解:如图1,

15、当ABBC时,BC2,故BC2=4;如图2,当ABAC=2时,过A作ADBC于D,连接OC,BDCD,设ODx,则在RtACD中,AC2=CD2+AD2,在RtOCD中,OC2=CD2+OD2,CD2= AC2-AD2= OC2- OD2即22-(2-x)2= 22-x2解得x=1CD=BC=2BC2=12;如图3,当ACBC时,则C在AB的垂直平分线上, 线 封 密 内 号学级年名姓 线 封 密 外 CD经过圆心O,ADBD=1,OA2,OD,CDCOOD2+,CD= CO-OD2-,BC2CD2+BD2=(2+)2+12=,BC2CD2+BD2=(2-)2+12=,综上,BC2为4或12或

16、故答案为:4或12或【点睛】本题考查了垂径定理,等腰三角形的性质,勾股定理的应用,熟练掌握性质定理是解题的关键3、【分析】根据阴影部分面积等于以为直径的2 个半圆的面积加上减去为半径的半圆面积即【详解】解:在中,故答案为:【点睛】本题考查了勾股定理,求扇形面积,直径所对的圆周角是直角,掌握圆周角定理是解题的关键4、5【分析】由n边形的对角线有: 条,再把代入计算即可得【详解】解:边形共有条对角线,五边形共有条对角线故答案为:5【点睛】本题考查的是多边形的对角线的条数,掌握n边形的对角线的条数是解题的关键5、 (-2,3)【分析】根据“关于原点对称的点的坐标关系,横坐标与纵坐标都互为相反数”,即

17、可求解【详解】 线 封 密 内 号学级年名姓 线 封 密 外 点(2,-3)关于原点的对称点的坐标是(-2,3) 故答案为:(-2,3)【点睛】本题主要考查点关于原点对称,解决本题的关键是要熟练掌握关于原点对称点的坐标的关系三、解答题1、(1);(2)证明见详解;(3)【分析】(1)过点P作PGEC于G,根据等腰直角三角形得出B=C=45,根据PGEC,可取GPC=90-C=45,可得PG=GC,根据三角形外角性质EPC=75,可求EPG=30,根据30直角三角形性质得出EP=2EG,根据勾股定理根据EC=EG+GC=EG+,可求EG=即可;(2)连结AE,在CE上截取EJ=AE,连结AJ,根

18、据MAH=45=HEC,可得点A、M、C、E四点共圆,得出AEM=ACM=45=HEC,AME=ACE,可得AEJ为等腰直角三角形,根据根据勾股定理AJ=,得出CAE=MCE,可证JAC=JCA,可得AJ=JC=,先证CHMECM,再证AEMHEC(AAS),得出EM=EC,再证AMEMCF(AAS),得出AE=MF即可;(3)分两种情况,当BE在ABC的平分线上时,与BE在ABC外部时,当BE在ABC的平分线上时,作ABC的平分线交AC于O,将AEC逆时针旋转90得到AFC,过点O作OPBC于P,则点E在BO上,有ABE=ABC,先证B、A、C三点共线,根据两点之交线段最短可得BF+CE=B

19、F+CFBC,当点F在BC上时,BF+CE最短=BC,此时点E在AC上与点O重合,然后利用勾股定理EC=,BF=AB+AF=AC+AF=(1+)AF +AF=(2+)AF 在RtABE中,根据勾股定理,当BE在ABC外部时,EBA=,将EAC逆时针旋转90得到FAC,先证B、A、C三点共线,根据两点之间线段最短可得BF+CE=BF+FCBC,当点F在BC上时,BF+CE最短= BC,再证EF=BF,然后根据勾股定理BF=CE=AE+AC=AF+AB=在RtEAB中,根据勾股定理即可【详解】解:(1)过点P作PGEC于G,BAC=90,AB=AC,B=C=45,PGEC,GPC=90-C=45,

20、PG=GC,EAC=30,EDF=90,DE=DF,DEF=F=45,EPC=AEF+EAC=30+45=75,EPG=EPC-GPC=75-45=30,EP=2EG,在RtEPG中,根据勾股定理GC=PG=EC=EG+GC=EG+,EG=,EP=2EG=; 线 封 密 内 号学级年名姓 线 封 密 外 (2)连结AE,在CE上截取EJ=AE,连结AJ,BM=CM,AB=AC,BAC=90,AMBC,AM=BM=CM,MAH=45=HEC,点A、M、C、E四点共圆,AEM=ACM=45=HEC,AME=ACE,AEJ=AEM+HEC=45+45=90,AE=JE,EAJ=EJA=45,在RtA

21、EJ中,根据勾股定理AJ=,CAE=MCE,JAC+45=JCA+45,JAC=JCA,AJ=JC=,HCM=CEM=45,HMC=CME,CHMECM,MHC=MCE,EHA=MHC=MCE=EAHAE=HE,在AEM和HEC中,AEMHEC(AAS),EM=EC,EMC=ECM,AME+EMC=ECM+MCF=90,AME=MCF,在AME和MCF中,AMEMCF(AAS),AE=MF,CE=EJ+JC=MF+AE; 线 封 密 内 号学级年名姓 线 封 密 外 (3)分两种情况,当BE在ABC的平分线上时,与BE在ABC外部时,当当BE在ABC的平分线上时,作ABC的平分线交AC于O,将

22、AEC逆时针旋转90得到AFC,过点O作OPBC于P,则点E在BO上,有ABE=ABC,AECAFC,CAE=CAF,BAC=BAC+OAC=BAC+FAC+OAF=BAC+EAC+OAF=BAC+EAF=180,B、A、C三点共线,BF+CE=BF+CFBC,当点F在BC上时,BF+CE最短=BC,此时点E在AC上与点O重合,BO为ABC的平分线,OAAB,OPBC,OP=AO=AF,AB=AC,BAC=90,ABC=C=45,PEC=180-EPC-C=45,PC=EP=AF,EC=,AC=AE+EC=AF+=(1+)AF ,BF=AB+AF=AC+AF=(1+)AF +AF=(2+)AF

23、 ,在RtABE中,根据勾股定理,;当BE在ABC外部时,EBA=,将EAC逆时针旋转90得到FAC,则EACFAC,AC=AC,EC=FC,EAC=FAC,FEB+EAC=360-EAF-BAC=360-90-90=180,FAB+FAC=FAB+EAC=180,B、A、C三点共线,BF+CE=BF+FCBC, 线 封 密 内 号学级年名姓 线 封 密 外 点F在BC上时,BF+CE最短= BC,EBA=,EFA=45,EFA=EBA+BEF=45,BEF=45-EBA=45-22.5=22.5,EF=BF,在RtEAF中, ,BF=,AB=BF+AF=+AF=,CE=AE+AC=AF+AB

24、=,在RtEAB中,根据勾股定理,综合【点睛】本题考查等腰直角三角形性质,三角形外角性质,30直角三角形性质,勾股定理,三角形全等判定与性质,四点共圆,同弧所对圆周角性质,三角形相似判定与性质,图形旋转性质,最短路径问题,角平分线性质,分类讨论思想,本题难度大,应用知识多,是中考压轴题,利用辅助线作出正确图形是解题关键2、见解析【分析】先作线段的垂直平分线确定的中点,再以中点为圆心,一半为半径作圆交于点,然后作直线,则根据圆周角定理可得为所求【详解】如图,直线AB就是所求作的,(作法不唯一,作出一条即可,需要有作图痕迹) 线 封 密 内 号学级年名姓 线 封 密 外 【点睛】本题考查了作图复杂

25、作图,解题的关键是掌握复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作3、(1);(2)【分析】(1)利用概率公式,即可求解;(2)根据题意画出树状图,得到共有6种等可能的情况数,其中他们恰好都选择同一类岗位的有2种,再利用概率公式,即可求解【详解】解:东东从三个岗位中随机选取一个报名,恰好选择清理类岗位的概率为(2)根据题意画图如下:共有6种等可能的情况数,其中他们恰好都选择同一类岗位的有2种,则他们恰好都选择同一类岗位的概率是【点睛】本题主要考查了利用画树状

26、图法或列表法求概率,熟练掌握随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数;P(必然事件)=1;P(不可能事件)=0是解题的关键4、(1)45(2)【分析】(1)连接OC,根据切线的性质得到OCCD,根据圆周角定理得到DOC=2CAD,进而证明D=DOC,根据等腰直角三角形的性质求出D的度数;(2)根据等腰三角形的性质求出OC,根据弧长公式计算即可(1)连接 , ,即 , 是的切线, 线 封 密 内 号学级年名姓 线 封 密 外 ,即 (2) , , 的长【点睛】本题考查的是切线的性质、圆周角定理、弧长的计算,掌握圆的切线垂直于经过切点的半径是解题的关键5、(1)作图见解析(2)是的切线,理由见解析【分析】(1)如图1所示,以点为圆心,大于为半径画弧,交于点,交于点;分别以点为圆心,大于的长度为半径画弧,交点为,连接即为角平分线,与的交点即为点(2)如图2所示,连接,由题意可知,;在四边形中,求出,得出,由于是半径,故有是的切线(1)解:如图1所示(2)解:是的切线如图2所示,连接由题意可知,在四边形中 线 封 密 内 号学级年名姓 线 封 密 外 又是半径是的切线【点睛】本题考查了角平分线的画法与性质,切线的判定,圆周角等知识点解题的关键在于将知识综合灵活运用

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁