2021-2022学年最新2022年沪科版九年级数学下册期末专项测评-A卷(含答案及详解).docx

上传人:可****阿 文档编号:32521669 上传时间:2022-08-09 格式:DOCX 页数:30 大小:1.40MB
返回 下载 相关 举报
2021-2022学年最新2022年沪科版九年级数学下册期末专项测评-A卷(含答案及详解).docx_第1页
第1页 / 共30页
2021-2022学年最新2022年沪科版九年级数学下册期末专项测评-A卷(含答案及详解).docx_第2页
第2页 / 共30页
点击查看更多>>
资源描述

《2021-2022学年最新2022年沪科版九年级数学下册期末专项测评-A卷(含答案及详解).docx》由会员分享,可在线阅读,更多相关《2021-2022学年最新2022年沪科版九年级数学下册期末专项测评-A卷(含答案及详解).docx(30页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、 线 封 密 内 号学级年名姓 线 封 密 外 2022年沪科版九年级数学下册期末专项测评 A卷 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、等边三角形、等腰三角形、矩形、菱形中既是轴对称图形,又是中心

2、对称图形的个数是( )A2个B3个C4个D5个2、在平面直角坐标系中,已知点与点关于原点对称,则的值为( )A4B-4C-2D23、下列图形中,既是中心对称图形也是轴对称图形的是( )ABCD4、把6张大小、厚度、颜色相同的卡片上分别画上线段、等边三角形、正方形、长方形、圆、抛物线在看不见图形的条件下任意摸出1张,这张卡片上的图形是中心对称图形的概率是( )ABCD5、如图,圆形螺帽的内接正六边形的面积为24cm2,则圆形螺帽的半径是()A1cmB2cmC2cmD4cm6、图2是由图1经过某一种图形的运动得到的,这种图形的运动是( )A平移B翻折C旋转D以上三种都不对7、如图,AB,CD是O的

3、弦,且,若,则的度数为( )A30B40C45D608、如图,在ABC中,CAB=64,将ABC在平面内绕点A旋转到ABC的位置,使CCAB,则旋转角的度数为( ) 线 封 密 内 号学级年名姓 线 封 密 外 A64B52C42D369、如图,ABCD是正方形,CDE绕点C逆时针方向旋转90后能与CBF重合,那么CEF是()A.等腰三角形B等边三角形C.直角三角形D.等腰直角三角形10、如图,在RtABC中,ACB90,A30,BC2将ABC绕点C按顺时针方向旋转到点D落在AB边上,此时得到EDC,斜边DE交AC边于点F,则图中阴影部分的面积为( )A3B1CD第卷(非选择题 70分)二、填

4、空题(5小题,每小题4分,共计20分)1、如图,将矩形绕点A顺时针旋转到矩形的位置,旋转角为若,则的大小为_(度)2、有五张正面分别标有数字,0,1,2的不透明卡片,它们除数字不同外其余全部相同现将它们背面朝上,洗匀后从中任取一张,将该卡片上的数字记为,将该卡片放回洗匀后从中再任取一张,将该卡片上的数字记为,则为非负数的概率为_3、两直角边分别为6、8,那么的内接圆的半径为_4、皮影戏是一种以兽皮或纸板做成的人物剪影,在灯光照射下用隔亮布进行表演的民间戏剧表演者在幕后操纵剪影、演唱,或配以音乐,具有浓厚的乡土气息“皮影戏”中的皮影是_(填写“平行投影”或“中心投影”)5、如图,点A,B,C在O

5、上,四边形OABC是平行四边形,若对角线AC2,则的长为 _三、解答题(5小题,每小题10分,共计50分)1、在平面直角坐标系xOy中,给出如下定义:若点P在图形M上,点Q在图形N上,称线段PQ长度的最小值为图形M,N的“近距离”,记为d(M,N),特别地,若图形M,N有公共点,规定d(M,N) 线 封 密 内 号学级年名姓 线 封 密 外 0已知:如图,点A(,0),B(0,)(1)如果O的半径为2,那么d(A,O) ,d(B,O) (2)如果O的半径为r,且d(O,线段AB)=0,求r的取值范围;(3)如果C(m,0)是x轴上的动点,C的半径为1,使d(C,线段AB)1,直接写出m的取值范

6、围2、如图,等腰直角三角形,延长至E,使得,以为直角边作,(1)若以每秒1个单位的速度沿向右运动,当点E到达点C时停止运动,直接写出在运动过程中与重叠部分面积S与运动时间t(单位:秒)的函数关系式;(2)点M为线段的中点,当(1)中的顶点E运动到点C后,将绕着点C继续顺时针旋转得到,点P是直线上一动点,连接,求的最小值3、对于平面直角坐标系xOy中的图形M,N,给出如下定义:若图形M和图形N有且只有一个公共点P,则称点P是图形M和图形N的“关联点”已知点,(1)直线l经过点A,的半径为2,在点A,C,D中,直线l和的“关联点”是_;(2)G为线段OA中点,Q为线段DG上一点(不与点D,G重合)

7、,若和有“关联点”,求半径r的取值范围;(3)的圆心为点,半径为t,直线m过点A且不与x轴重合若和直线m的“关联点”在直线上,请直接写出b的取值范围4、在平面直角坐标系中,的三个顶点坐标分别为(每个方格的边长均为1个单位长度)(1)画出关于原点对称的图形,并写出点的坐标;(2)画出绕点O逆时针旋转后的图形,并写出点的坐标;(3)写出经过怎样的旋转可直接得到(请将20题(1)(2)小问的图都作在所给图中)5、已知线段AB,用平移、旋转、轴对称画出一个以AB为一边,一个内角是30的菱形(不写画法,保留作图痕迹) 线 封 密 内 号学级年名姓 线 封 密 外 -参考答案-一、单选题1、A【分析】根据

8、轴对称图形与中心对称图形的概念进行判断【详解】解:矩形,菱形既是轴对称图形,也是中心对称图形,符合题意;等边三角形、等腰三角形是轴对称图形,不是中心对称图形,不符合题意;共2个既是轴对称图形又是中心对称图形故选:A【点睛】此题主要考查了中心对称图形与轴对称图形的概念(1)如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴(2)如果一个图形绕某一点旋转180后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心2、C【分析】根据关于原点对称的点的坐标特点:两个点关于原点对称时,它们的坐标符号相反即可得到答案【详解】解:点与点关于原点对称,故选

9、:C【点睛】此题主要考查了原点对称点的坐标特点,解题的关键是掌握点的变化规律3、A【分析】根据轴对称图形与中心对称图形的概念求解【详解】解:A、既是轴对称图形,也是中心对称图形,故此选项符合题意;B、是轴对称图形,不是中心对称图形,故此选项不符合题意;C、是中心对称图形,不是轴对称图形,故此选项不符合题意;D、是中心对称图形,不是轴对称图形,故此选项不符合题意故选:A【点睛】本题考查中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180后与原图重合4、D【分析】根据题意,判断出

10、中心对称图形的个数,进而即可求得答案【详解】解:线段、等边三角形、正方形、长方形、圆、抛物线中,中心对称图形有:线段、正方形、长方形、圆,共4种,总数为6种在看不见图形的条件下任意摸出1张,这张卡片上的图形是中心对称图形的概率是 线 封 密 内 号学级年名姓 线 封 密 外 故选D【点睛】本题考查了概率公式求概率,中心对称图形,掌握线段、等边三角形、正方形、长方形、圆、抛物线的性质是解题的关键5、D【分析】根据圆内接正六边形的性质可得AOB是正三角形,由面积公式可求出半径【详解】解:如图,由圆内接正六边形的性质可得AOB是正三角形,过作于 设半径为r,即OA=OB=AB=r, OM=OAsin

11、OAB=, 圆O的内接正六边形的面积为(cm2), AOB的面积为(cm2), 即, , 解得r=4, 故选:D【点睛】本题考查正多边形和圆,作边心距转化为直角三角形的问题是解决问题的关键6、C【详解】解:根据图形可知,这种图形的运动是旋转而得到的,故选:C【点睛】本题考查了图形的旋转,熟记图形的旋转的定义(把一个平面图形绕平面内某一点转动一个角度,叫做图形的旋转)是解题关键7、B【分析】由同弧所对的圆周角是圆心角的一半可得,利用平行线的性质:两直线平行,内错角相等即可得【详解】解:,故选:B【点睛】题目主要考查圆周角定理,平行线的性质等,理解题意,找出相关的角度是解题关键8、B【分析】先根据

12、平行线的性质得ACC=CAB=64,再根据旋转的性质得CAC等于旋转角,AC=AC,则 线 封 密 内 号学级年名姓 线 封 密 外 利用等腰三角形的性质得ACC=ACC=64,然后根据三角形内角和定理可计算出CAC的度数,从而得到旋转角的度数【详解】解:CCAB,ACC=CAB=64ABC在平面内绕点A旋转到ABC的位置,CAC等于旋转角,AC=AC,ACC=ACC=64,CAC=180-ACC-ACC=180-264=52,旋转角为52故选:B【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等9、D【分析】根据旋转的性质

13、推出相等的边CECF,旋转角推出ECF90,即可得到CEF为等腰直角三角形【详解】解:CDE绕点C逆时针方向旋转90后能与CBF重合,ECF90,CECF,CEF是等腰直角三角形,故选:D【点睛】本题主要考查旋转的性质,掌握图形旋转前后的大小和形状不变是解决问题的关键10、D【分析】根据题意及旋转的性质可得是等边三角形,则,根据含30度角的直角三角形的性质,即可求得,由勾股定理即可求得,进而求得阴影部分的面积【详解】解:如图,设与相交于点,旋转,是等边三角形, 线 封 密 内 号学级年名姓 线 封 密 外 ,阴影部分的面积为故选D【点睛】本题考查了等边三角形的性质,勾股定理,含30度角的直角三

14、角形的性质,旋转的性质,利用含30度角的直角三角形的性质是解题的关键二、填空题1、20【分析】先利用旋转的性质得到ADC=D=90,DAD=,再利用四边形内角和计算出BAD=70,然后利用互余计算出DAD,从而得到的值【详解】矩形ABCD绕点A顺时针旋转到矩形ABCD的位置,ADC=D=90,DAD=,ABC=90,BAD=180-1=180-110=70,DAD=90-70=20,即=20故答案为20【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等2、【分析】求出为负数的事件个数,进而得出 为非负数的事件个数,然后求解即

15、可【详解】解:两次取卡片共有种可能的事件;两次取得卡片数字乘积为负数的事件为等8种可能的事件为非负数共有种 为非负数的概率为故答案为:【点睛】本题考查了列举法求随机事件的概率解题的关键在于求出事件的个数3、5【分析】直角三角形外接圆的直径是斜边的长【详解】解:由勾股定理得:AB=10,ACB=90,AB是O的直径,这个三角形的外接圆直径是10,这个三角形的外接圆半径长为5, 线 封 密 内 号学级年名姓 线 封 密 外 故答案为:5【点睛】本题考查了三角形的外接圆与外心,知道直角三角形外接圆的直径是斜边的长是关键;外心是三边垂直平分线的交点,外心到三个顶点的距离相等4、中心投影【分析】根据平行

16、投影和中心投影的定义解答即可【详解】解:“皮影戏”中的皮影是中心投影故答案是中心投影【点睛】本题主要考查了平行投影和中心投影,中心投影是指把光由一点向外散射形成的投影,平行投影是在一束平行光线照射下形成的投影5、【分析】连接OB,交AC于点D,根据有一组邻边相等的平行四边形是菱形,可得四边形OABC为菱形,根据菱形的性质可得:,根据等边三角形的判定得出为等边三角形,由此得出,在直角三角形中利用勾股定理即可确定圆的半径,然后代入弧长公式求解即可【详解】解:如图所示,连接OB,交AC于点D,四边形OABC为平行四边形,四边形OABC为菱形, ,为等边三角形,在中,设,则,即,解得:或(舍去),的长

17、为:,故答案为:【点睛】 线 封 密 内 号学级年名姓 线 封 密 外 题目主要考查菱形的判定和性质,等边三角形的判定和性质,勾股定理,弧长公式等,熟练掌握各个定理和公式是解题关键三、解答题1、(1)0,;(2);(3)【分析】(1)根据新定义,即可求解;(2)过点O作ODAB于点D,根据三角形的面积,可得,再由d(O,线段AB)=0,可得当O的半径等于OD时最小,当O的半径等于OB时最大,即可求解;(3)过点C作CNAB于点N ,利用锐角三角函数,可得OAB=60,然后分三种情况:当点C在点A的右侧时,当点C与点A重合时,当点C在点A的左侧时,即可求解【详解】解:(1)O的半径为2,A(,0

18、),B(0,),点A在O上,点B在O外,d(A,O),d(B,O);(2)过点O作ODAB于点D,点A(,0),B(0,) , , , ,d(O,线段AB)=0,当O的半径等于OD时最小,当O的半径等于OB时最大,r的取值范围是,(3)如图,过点C作CNAB于点N , 线 封 密 内 号学级年名姓 线 封 密 外 点A(,0),B(0,) , ,OAB=60,C(m,0),当点C在点A的右侧时, , , ,d(C,线段AB)1,C的半径为1, ,解得: ,当点C与点A重合时, ,此时d(C,线段AB)=0,当点C在点A的左侧时, , , ,解得: ,【点睛】本题主要考查了点与圆的位置关系,点与

19、直线的位置关系,理解新定义,熟练掌握点与圆的位置关系,点与直线的位置关系是解题的关键2、(1)(2)【分析】(1)根据运动重合部分不同情况分四种情况讨论,当时,当时,当时,当时,根据三角形的面积公式求函数解析式即可(2)作关于的对称点,连接,过点作于点,过点作于点,设交于点,交于点,则的最小值即为的长,进而解直角三角形,即可求得的长,即的最小值(1)等腰直角三角形, , 线 封 密 内 号学级年名姓 线 封 密 外 在,当时,如图,重叠部分面积为,设交于点,过点作于点,以每秒1个单位的速度沿向右运动,设,则在,,即解得当时,如图,重叠部分面积为四边形的面积,设交于点,过点作于点,设交于点,当时

20、,此时重叠面积为当时,如图,设交于点,此时重叠面积为四边形的面积, 线 封 密 内 号学级年名姓 线 封 密 外 ,综上所述,(2)如图,作关于的对称点,连接,过点作于点,过点作于点,设交于点,交于点,则在中,则的最小值即为的长在中,设,则中,为的中点,则 线 封 密 内 号学级年名姓 线 封 密 外 ,即的最小值为【点睛】本题考查了动点的函数问题,解直角三角形,(1)分类讨论,(2)转化线段是解题的关键3、(1)C(2)(3)【分析】(1)作出图形,根据切线的定义结合“关联点”即可求解;(2)根据题意,为等边三角形,则仅与相切时,和有“关联点”,进而求得半径r的取值范围;(3)根据关联点以及

21、切线的性质,直径所对的角是直角,找到点的运动轨迹是以为圆心半径为的半圆在轴上的部分,进而即可求得的值(1)解:如图,,,轴,.的半径为2,直线与相切直线l和的“关联点”是点故答案为:(2)如图,根据题意与有“关联点”,则与相切,且与相离 线 封 密 内 号学级年名姓 线 封 密 外 ,是等边三角形为的中点,则当与相切时,则点为的内心半径r的取值范围为:(3)如图,设和直线m的“关联点”为,交轴于点,是的切线,的圆心为点,半径为t,轴是的切线点的运动轨迹是以为圆心半径为的半圆在轴上的部分,则点,在直线上,当直线与相切时,即当点与点重合时,最大,此时与轴交于点,当点运动到点时,则过点,则解得b的取

22、值范围为:【点睛】本题考查了切线的性质与判定,切线长定理,勾股定理,一次函数与坐标轴交点问题,等边三角形的性质,等边三角形的内心的性质,掌握以上知识是解题的关键4、(1)见解析,; 线 封 密 内 号学级年名姓 线 封 密 外 (2)见解析,(3)绕点O顺时针时针旋转【分析】(1)根据题意得:关于原点的对称点为 ,再顺次连接,即可求解;(2)根据题意得:绕点O逆时针旋转后的对称点为 ,再顺次连接;(3)根据题意得:绕点O顺时针时针旋转后可直接得到,即可求解(1)解:根据题意得:关于原点的对应点为 ,画出图形如下图所示:(2)解:根据题意得:绕点O逆时针旋转后的对应点为 ,画出图形如下图所示:(3)解:根据题意得:绕点O顺时针时针旋转后可直接得到【点睛】本题主要考查了图形的变换画关于原点对称,绕原点旋转后图形,得到图形关于原点对称,绕原点旋转后对应点的坐标是解题的关键5、见解析【分析】把线段AB绕点A逆时针旋转30得到线段AD,作直线BD,以直线BD为对称轴,分别作AB、AD的轴对称图形,即可得到所求的菱形ABCD.【详解】解:如图所示:菱形ABCD即为所求.【点睛】本题主要考查了菱形的性质、旋转的性质、轴对称的性质等知识点,理解菱形的性质是解答本题的关键.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁