《2021-2022学年沪科版九年级数学下册期末定向测评-卷(Ⅰ)(含答案及解析).docx》由会员分享,可在线阅读,更多相关《2021-2022学年沪科版九年级数学下册期末定向测评-卷(Ⅰ)(含答案及解析).docx(22页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、 线 封 密 内 号学级年名姓 线 封 密 外 沪科版九年级数学下册期末定向测评 卷() 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在圆内接四边形ABCD中,A、B、C的度数之比为2:4:7,则B的度
2、数为( )A140B100C80D402、下列判断正确的是( )A明天太阳从东方升起是随机事件;B购买一张彩票中奖是必然事件;C掷一枚骰子,向上一面的点数是6是不可能事件;D任意画一个三角形,其内角和是360是不可能事件;3、如图,AB是的直径,CD是的弦,且,则图中阴影部分的面积为( )ABCD4、在平面直角坐标系中,已知点与点关于原点对称,则的值为( )A4B-4C-2D25、如图,将OAB绕点O逆时针旋转80得到OCD,若A的度数为110,D的度数为40,则AOD的度数是( )A50B60C40D306、下列事件是随机事件的是( )A抛出的篮球会下落B经过有交通信号灯的路口,遇到红灯C任
3、意画一个三角形,其内角和是D400人中有两人的生日在同一天7、如图,中,O是AB边上一点,与AC、BC都相切,若,则的半径为( )A1B2CD 线 封 密 内 号学级年名姓 线 封 密 外 8、把6张大小、厚度、颜色相同的卡片上分别画上线段、等边三角形、正方形、长方形、圆、抛物线在看不见图形的条件下任意摸出1张,这张卡片上的图形是中心对称图形的概率是( )ABCD9、如图,在中,将绕原点O逆时针旋转90,则旋转后点A的对应点的坐标是( )ABCD10、如图,与的两边分别相切,其中OA边与相切于点P若,则OC的长为( )A8BCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分
4、)1、如图,把ABC绕点C顺时针旋转某个角度得到,A30,170,则旋转角的度数为_2、如图,在等腰直角中,已知,将绕点逆时针旋转60,得到,连接,若,则_3、把一个正六边形绕其中心旋转,至少旋转_度,可以与自身重合4、某射击运动员在同一条件下的射击成绩记录如下:射击次数20401002004001000“射中9环以上”的次数153378158321801“射中9环以下”的频率通过计算频率,估计这名运动员射击一次时“射中9环以上”的概率是_(结果保留小数点后一位)5、背面完全相同的四张卡片,正面分别写着数字-4,-1,2,3,背面朝上并洗匀,从中随机抽取一张,将卡片上的数字记为,再从余下的卡片
5、中随机抽取一张,将卡片上的数字记为,则点在第四象限的概率为_三、解答题(5小题,每小题10分,共计50分)1、如图,在直角坐标系中,将ABC绕点A顺时针旋转90 线 封 密 内 号学级年名姓 线 封 密 外 (1)画出旋转后的AB1C1,并写出B1、C1的坐标;(2)求线段AB在旋转过程中扫过的面积2、如图,在中,AB是直径,弦EFAB(1)请仅用无刻度的直尺画出劣弧EF的中点P;(保留作图痕迹,不写作法)(2)在(1)的条件下,连接OP交EF于点Q,求PQ的长度3、一张圆桌旁设有4个座位,丙先坐在了如图所示的座位上,甲、乙、丁3人等可能地坐到、中的3个座位上(1)甲坐在号座位的概率是 ;(2
6、)用画树状图或列表的方法,求甲与乙相邻而坐的概率4、如图,是由若干个完全相同的小正方体组成的一个几何体从左面、上面观察如图所示的几何体,分别画出你所看到的平面图形5、正方形绿化场地拟种植两种不同颜色(用阴影部分和非阴影部分表示)的花卉,要求种植的花卉能组成轴对称或中心对称图案,下面是三种不同设计方案中的一部分(1)请把图、图补成既是轴对称图形,又是中心对称图形,并画出一条对称轴;(2)把图补成只是中心对称图形,并把中心标上字母P-参考答案-一、单选题1、C【分析】,进而求解的值【详解】 线 封 密 内 号学级年名姓 线 封 密 外 解:由题意知故选C【点睛】本题考查了圆内接四边形中对角互补解题
7、的关键在于根据角度之间的数量关系求解2、D【详解】解:A、明天太阳从东方升起是必然事件,故本选项错误,不符合题意;B、购买一张彩票中奖是随机事件,故本选项错误,不符合题意;C、掷一枚骰子,向上一面的点数是6是随机事件,故本选项错误,不符合题意;D、任意画一个三角形,其内角和是360是不可能事件,故本选项正确,符合题意;故选:D【点睛】本题考查的是对必然事件的概念的理解,熟练掌握必然事件指在一定条件下一定发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件是解题的关键3、C【分析】如图,连接OC,OD,可知是等边三角形,计算求解即可【详解】解:如图连接OC,OD是等边三角
8、形由题意知,故选C【点睛】本题考查了扇形的面积,等边三角形等知识解题的关键在于用扇形表示阴影面积4、C【分析】根据关于原点对称的点的坐标特点:两个点关于原点对称时,它们的坐标符号相反即可得到答案【详解】解:点与点关于原点对称, 线 封 密 内 号学级年名姓 线 封 密 外 故选:C【点睛】此题主要考查了原点对称点的坐标特点,解题的关键是掌握点的变化规律5、A【分析】根据旋转的性质求解再利用三角形的内角和定理求解再利用角的和差关系可得答案.【详解】解: 将OAB绕点O逆时针旋转80得到OCD, A的度数为110,D的度数为40, 故选A【点睛】本题考查的是三角形的内角和定理的应用,旋转的性质,掌
9、握“旋转前后的对应角相等”是解本题的关键.6、B【分析】根据事件的确定性和不确定性,以及随机事件的含义和特征,逐项判断即可【详解】A.抛出的篮球会下落是必然事件,故此选项不符合题意;B.经过有交通信号灯的路口,遇到红灯是随机事件,故此选项符合题意; C.任意画一个三角形,其内角和是是不可能事件,故此选项不符合题意;D. 400人中有两人的生日在同一天是必然事件,故此选项不符合题意;故选B【点睛】此题主要考查了事件的确定性和不确定性,要熟练掌握,解答此题的关键是要明确:事件分为确定事件和不确定事件(随机事件),确定事件又分为必然事件和不可能事件7、D【分析】作ODAC于D,OEBC于E,如图,设
10、O的半径为r,根据切线的性质得OD=OE=r,易得四边形ODCE为正方形,则CD=OD=r,再证明ADOACB,然后利用相似比得到,再根据比例的性质求出r即可【详解】解:作ODAC于D,OEBC于E,如图,设O的半径为r,O与AC、BC都相切,OD=OE=r,而C=90,四边形ODCE为正方形,CD=OD=r,ODBC, 线 封 密 内 号学级年名姓 线 封 密 外 ADOACB, AF=AC-r,BC=3,AC=4,代入可得,r=故选:D【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题也
11、考查了相似三角形的判定与性质8、D【分析】根据题意,判断出中心对称图形的个数,进而即可求得答案【详解】解:线段、等边三角形、正方形、长方形、圆、抛物线中,中心对称图形有:线段、正方形、长方形、圆,共4种,总数为6种在看不见图形的条件下任意摸出1张,这张卡片上的图形是中心对称图形的概率是故选D【点睛】本题考查了概率公式求概率,中心对称图形,掌握线段、等边三角形、正方形、长方形、圆、抛物线的性质是解题的关键9、C【分析】过点A作ACx轴于点C,设 ,则 ,根据勾股定理,可得,从而得到 ,进而得到 ,可得到点 ,再根据旋转的性质,即可求解【详解】解:如图,过点A作ACx轴于点C, 设 ,则 , ,
12、, ,解得: , , , 线 封 密 内 号学级年名姓 线 封 密 外 点 ,将绕原点O顺时针旋转90,则旋转后点A的对应点的坐标是,将绕原点O逆时针旋转90,则旋转后点A的对应点的坐标是故选:C【点睛】本题考查坐标与图形变化一旋转,解直角三角形等知识,解题的关键是求出点A的坐标,属于中考常考题型10、C【分析】如图所示,连接CP,由切线的性质和切线长定理得到CPO=90,COP=45,由此推出CP=OP=4,再根据勾股定理求解即可【详解】解:如图所示,连接CP,OA,OB都是圆C的切线,AOB=90,P为切点,CPO=90,COP=45,PCO=COP=45,CP=OP=4,故选C【点睛】本
13、题主要考查了切线的性质,切线长定理,等腰直角三角形的性质与判定,勾股定理,熟知切线长定理是解题的关键二、填空题1、#【分析】由旋转的性质可得再利用三角形的外角的性质求解从而可得答案.【详解】解: 把ABC绕点C顺时针旋转某个角度得到,A30, 170, 故答案为:【点睛】本题考查的是旋转的性质,三角形的外角的性质,利用性质的性质求解是解本题的关键.2、 线 封 密 内 号学级年名姓 线 封 密 外 【分析】如图连接并延长,过点作交于点,由题意可知为等边三角形,在中;在中计算求解即可【详解】解:如图连接并延长,过点作交于点, 由题意可知,为等边三角形 在中在中故答案为:【点睛】本题考查了旋转的性
14、质,等边三角形,勾股定理,含的直角三角形等知识解题的关键在于做辅助线构造直角三角形3、60【分析】正六边形连接各个顶点和中心,这些连线会将360分成6分,每份60因此至少旋转60,正六边形就能与自身重合【详解】3606=60故答案为:60【点睛】本题考查中心对称图形的性质,根据图形特征找到最少旋转度数是本题关键4、0.8【分析】重复试验次数越多,其频率越能估计概率,求出射击1000次时的频率即可【详解】解:由题意可知射击1000次时,运动员射击一次时“射中9环以上”的频率为用频率估计概率为0.801,保留小数点后一位可知概率值为0.8故答案为:0.8【点睛】本题考查了概率解题的关键在于明确频率
15、估计概率时要在重复试验次数尽可能多的情况下5、【分析】第四象限点的特征是,所以当横坐标只能为2或3,纵坐标只能是或,画出列表图或树状图,算出满足条件的情况,进一步求得概率即可【详解】如下图: 线 封 密 内 号学级年名姓 线 封 密 外 -4-123-4 -1 2 3 第四象限点的坐标特征是,满足条件的点分别是: ,共4种情况,又从列表图知,共有12种等可能性结果,点在第四象限的概率为故答案为:【点睛】本题主要考察概率的求解,要熟悉树状图或列表图的要点是解题关键三、解答题1、(1)作图见解析,、;(2)【分析】(1)将绕点A顺时针旋转90得,根据点A、B、C坐标,即可确定出点、的坐标;(2)根
16、据勾股定理求出AB的长,由扇形面积公式即可得出答案【详解】(1)将绕点A顺时针旋转90得如图所示:、;(2)由图可知:,线段AB在旋转过程中扫过的面积为【点睛】本题考查作旋转图形以及扇形的面积公式,掌握旋转的性质及扇形的面积公式是解题的关键2、(1)见解析(2)1【分析】(1)如图,连接BE,AF,BE交AF于C,作直线OC交于点P,点P即为所求 线 封 密 内 号学级年名姓 线 封 密 外 (2)利用垂径定理结合勾股定理求得OQ=4,进一步计算即可求解(1)解:如图中,点P即为所求(2)解:连接OF,由作图知OPEF,EQ=QF=EF=3,AB=10,OF=OP=AB=5,OQ=4,PQ=
17、OP- OQ=1,PQ的长度为1【点睛】本题考查了作图-应用与设计,垂径定理,勾股定理,解题的关键是灵活运用所学知识解决问题3、(1)(2)【分析】(1)根据概率公式直角计算即可;(2)画树状图可知共有6种等可能的结果,而甲与乙相邻而坐的结果有4种,最后用概率公式求解即可(1)解:丙坐了一张座位,甲坐在号座位的概率是故答案是(2)解:根据题意画树状图如图:共有6种等可能的结果,甲与乙两同学恰好相邻而坐的结果有4种,甲与乙相邻而坐的概率为= 线 封 密 内 号学级年名姓 线 封 密 外 【点睛】本题主要考查了概率公式以及运用树状图法求概率,正确画出树状图是解答本题的关键4、见解析【分析】根据几何体的三视图画法作图【详解】解:如图,【点睛】此题考查了画小正方体组成的几何体的三视图,正确掌握几何体的三视图的画图方法是解题的关键5、(1)见解析(2)见解析【分析】(1)根据轴对称图形,中心对称图形的性质画出图形即可(2)根据中心对称图形的定义画出图形即可(1)解:图形如图所示(2)解:图形如图所示,点P即为所求作【点睛】本题考查利用旋转变换设计图案,正方形的性质,轴对称图形,中心对称图形等知识,解题的关键是理解题意,灵活运用所学知识解决问题