2021-2022学年京改版七年级数学下册第八章因式分解专题练习试题(含答案解析).docx

上传人:知****量 文档编号:28146191 上传时间:2022-07-26 格式:DOCX 页数:16 大小:176.42KB
返回 下载 相关 举报
2021-2022学年京改版七年级数学下册第八章因式分解专题练习试题(含答案解析).docx_第1页
第1页 / 共16页
2021-2022学年京改版七年级数学下册第八章因式分解专题练习试题(含答案解析).docx_第2页
第2页 / 共16页
点击查看更多>>
资源描述

《2021-2022学年京改版七年级数学下册第八章因式分解专题练习试题(含答案解析).docx》由会员分享,可在线阅读,更多相关《2021-2022学年京改版七年级数学下册第八章因式分解专题练习试题(含答案解析).docx(16页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、京改版七年级数学下册第八章因式分解专题练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列多项式:(1)a2b2;(2)x2y2;(3)m2n2;(4)b2a2;(5)a64,能用平方差公式分解的因式

2、有( )A2个B3个C4个D5个2、已知的值为5,那么代数式的值是( )A2030B2020C2010D20003、下列各式从左到右的变形是因式分解的是( )Aaxbxc(ab)xcB(ab)(ab)a2b2C(ab)2a22abb2Da25a6(a6)(a1)4、下列各式能用完全平方公式进行因式分解的是( )A9x2-6x+1Bx2+x+1Cx2+2x-1Dx2-95、如图,边长为a,b的长方形的周长为18,面积为12,则a3bab3的值为( )A216B108C140D6846、下列等式中,从左往右的变形为因式分解的是()Aa2a1a(a1)B(ab)(a+b)a2b2Cm2m1m(m1)

3、1Dm(ab)+n(ba)(mn)(ab)7、下列各式中从左到右的变形中,是因式分解的是( )ABCD8、下列各式能用平方差公式进行分解因式的是( )Ax21Bx22x1Cx2x1Dx24x49、如图,在边长为的正方形中挖掉一个边长为的小正方形,把余下的部分剪成一个矩形,通过计算两个图形(阴影部分)的面积,验证了一个等式是( )ABCD10、下列多项式因式分解正确的是( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、分解因式:_2、因式分解:_3、因式分解:(x2+y2)24x2y2=_4、将4a28ab+4b2因式分解后的结果为_5、分解因式_三、解答题(

4、5小题,每小题10分,共计50分)1、分解因式:x3y2x2y2+xy32、(1)计算:(12a3-6a2+3a)3a (2)因式分解:3、分解因式(1); (2)4、(1)计算:x(x2y2xy)x2y;(2)分解因式:3bx2+6bxy+3by25、我们知道,任意一个正整数c都可以进行这样的分解:c=ab(b是正整数,且ab),在c的所有这些分解中,如果a,b两因数之差的绝对值最小,我们就称ab是c的最优分解并规定:M(c)=,例如9可以分解成19,33,因为9-13-3,所以33是9的最优分解,所以M(9)=1(1)求M(8);M(24);M(c+1)2的值;(2)如果一个两位正整数d(

5、d=10x+y,x,y都是自然数,且1xy9),交换其个位上的数与十位上的数得到的新数加上原来的两位正整数所得的和为66,那么我们称这个数为“吉祥数”,求所有“吉祥数”中M(d)的最大值-参考答案-一、单选题1、B【解析】【分析】平方差公式:,根据平方差公式逐一分析可得答案.【详解】解:a2b2不能用平方差公式分解因式,故(1)不符合题意;x2y2能用平方差公式分解因式,故(2)符合题意;m2n2能用平方差公式分解因式,故(3)符合题意;b2a2不能用平方差公式分解因式,故(4)不符合题意;a64能用平方差公式分解因式,故(5)符合题意;所以能用平方差公式分解的因式有3个,故选B【点睛】本题考

6、查的是利用平方差公式分解因式,掌握“”是解本题的关键.2、B【解析】【分析】将化简为,再将代入即可得【详解】解:,把代入,原式=,故选B【点睛】本题考查了代数式求值,解题的关键是把掌握提公因式3、D【解析】【分析】根据因式分解的定义对各选项进行逐一分析即可【详解】解:A、axbxc(ab)xc,等式的右边不是几个整式的积,不是因式分解,故此选项不符合题意;B、(ab)(ab)a2b2,等式的右边不是几个整式的积,不是因式分解,故此选项不符合题意;C、(ab)2a22abb2,等式的右边不是几个整式的积,不是因式分解,故此选项不符合题意;D、a25a6(a6)(a1),等式的右边是几个整式的积的

7、形式,故是因式分解,故此选项符合题意;故选:D【点睛】本题考查了分解因式的定义解题的关键是掌握分解因式的定义,即把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式4、A【解析】【分析】根据完全平方公式的特点:两项平方项的符号相同,另一项是两底数积的2倍,对各选项解析判断后利用排除法求解:【详解】A. 9x2-6x+1 ,故该选项正确,符合题意; B. x2+x+1,不符合完全平方公式法分解因式的式子特点,故选项不符合题意; C. x2+2x-1,不符合完全平方公式法分解因式的式子特点,故选项不符合题意; D. x2-9,不符合完全平方公式法分解因式的式子特点,

8、故选项不符合题意;故选A【点睛】此题主要考查了运用公式法分解因式,正确应用公式是解题关键5、D【解析】【分析】根据长方形的周长可知,由长方形的面积,可得,将代数式a3bab3因式分解,进而代入代数式求值即可【详解】边长为a,b的长方形的周长为18,面积为12,故选D【点睛】本题考查了因式分解,代数式求值,整体代入是解题的关键6、D【解析】【分析】把一个多项式化为几个整式的乘积的形式叫因式分解,根据定义对各选项进行一一分析判断即可【详解】A. a2a1a(a1)从左往右的变形是乘积形式,但(a1)不是整式,故选项A不是因式分解;B. (ab)(a+b)a2b2,从左往右的变形是多项式的乘法,故选

9、项B不是因式分解;C. m2m1m(m1)1,从左往右的变形不是整体的积的形式,故选项C不是因式分解;D.根据因式分解的定义可知 m(ab)+n(ba)(mn)(ab)是因式分解,故选项D从左往右的变形是因式分解故选D【点睛】本题考查因式分解,掌握因式分解的特征从左往右的变形后各因式乘积,各因式必须为整式,各因式之间不有加减号是解题关键7、C【解析】【分析】由题意依据因式分解的定义即把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,结合选项进行判断即可【详解】解:A、,是整式的乘法,不是因式分解故A错误;B、,是整式不是因式分解;C、,是因式分解;D、右边不是整式的积的形式

10、(含有分式),不是因式分解;故选:C【点睛】本题考查了因式分解的意义,注意因式分解后左边和右边是相等的,不能凭空想象右边的式子8、A【解析】【分析】两个数的和与这两个数的差的积等于这两个数的平方差,用字母表示为,根据平方差公式的构成特点,逐个判断得结论【详解】A能变形为x212,符合平方差公式的特点,能用平方差公式分解因式;B多项式含有三项,不能用平方差公式分解因式;C多项式含有三项,不能用平方差公式分解因式;D多项式含有三项,不能用平方差公式分解因式故选:A【点睛】本题考查了运用平方差公式进行因式分解,熟记平方差公式的结构特点是求解的关键9、A【解析】【分析】左图中阴影部分的面积a2b2,右

11、图中矩形面积(ab)(ab),根据二者面积相等,即可解答【详解】解:由题意可得:a2b2(ab)(ab)故选:A【点睛】此题主要考查了乘法的平方差公式,属于基础题型10、D【解析】【分析】根据因式分解的定义,把一个多项式化乘几个因式积的形式可判断A,还能继续因式分解可判断B,因式中不能出现分式可判断C,利用完全平方公式因式分解可判断D【详解】解:A. ,因为括号外还有-5,不是乘积形式,故选项A不正确;B. ,因式分解不彻底,故选项B不正确;C. 因式中出现分式,故选项C不正确;D. 根据完全平方公式因式分解,故选项D正确故选择D【点睛】本题考查因式分解,掌握因式分解的方法与要求,注意因式分解

12、是几个因式乘积,分解彻底不能再分解为止,因式中不能出现分式二、填空题1、【解析】【分析】根据提取公因式法,提取公因式即可求解【详解】解:,故答案为:【点睛】本题考查了因式分解,解题的关键是熟练掌握提取公因式法2、【解析】【分析】原式提取公因式y2,再利用平方差公式分解即可【详解】解:原式=,故答案为:【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解题的关键3、(x-y)2(x+y)2【解析】【分析】根据平方差公式和完全平方公式因式分解即可;【详解】原式,;故答案是:【点睛】本题主要考查了利用公式法进行因式分解,准确分析化简是解题的关键4、【解析】【分析】先提取公因式4

13、,再利用完全平方式即可求出结果【详解】故答案为:【点睛】本题考查因式分解掌握提公因式和公式法进行因式分解是解答本题的关键5、【解析】【分析】直接利用提公因式法分解因式即可【详解】解:故答案为:【点睛】此题考查了因式分解的方法,解题的关键是熟练掌握因式分解的方法因式分解的方法有:提公因式法,平方差公式法,完全平方公式法,十字相乘法等三、解答题1、【解析】【分析】先提取公因式,再运用完全平方公式分解即可【详解】解:x3y2x2y2+xy3=【点睛】本题考查了因式分解,解题关键是熟练运用提取公因式法和公式法进行因式分解,注意:分解要彻底2、(1)4a2-2a+1;(2)2a(a-2)2【解析】【分析

14、】(1)根据多项式除以单项式的法则进行计算即可;(2)先提公因式,再根据完全平方公式进行因式分解即可【详解】解(1)(12a3-6a2+3a)3a=4a2-2a+1;(2)=2a(a2-4a+4)=2a(a-2)2【点睛】本题考查了整式的除法,以及因式分解法,掌握运算法则和完全平方公式是解题的关键3、(1);(2).【解析】【分析】(1)先提取公因式 再利用完全平方公式进行分解即可;(2)先把原式化为:,再提取公因式 再利用平方差公式进行分解即可.【详解】(1)解:原式= = (2)解:原式= = =【点睛】本题考查的是综合提公因式与公式法分解因式,易错点是分解因式不彻底,注意一定要分解到每个

15、因式都不能再分解为止.4、(1)xy-1;(2)3b(x+y)2【解析】【分析】(1)先计算单项式乘多项式,再计算多项式除以单项式,即可;(2)先提取公因式3b,再利用完全平方公式继续分解即可【详解】解:(1)x(x2y2xy)x2y=(x3y2-x2y)x2y=x3y2x2y -x2yx2y=xy-1;(2)3bx2+6bxy+3by2=3b(x2+2xy+y2)=3b(x+y)2【点睛】本题考查了单项式乘多项式,多项式除以单项式以及提公因式法与公式法的综合运用,熟练掌握运算法则是解本题的关键5、(1);1;(2);【解析】【分析】(1)根据c=ab中,c的所有这些分解中,如果a,b两因数之

16、差的绝对值最小,就称ab是c的最优分解,因此M(8)=,M(24)=,M(c+1)2= ;(2)设这个两位正整数d交换其个位上的数与十位上的数得到的新数为d,则d+d=(10x+y)+(10y+x)=11x+11y=11(x+y)=66,由于x,y都是自然数,且1xy9,所以满足条件的“吉祥数”有15、24、33所以M(15)=,M(24)=,M(33)=,所以所有“吉祥数”中M(d)的最大值为【详解】解:(1)由题意得,M(8)=;M(24)=;M(c+1)2=;(2)设这个两位正整数d交换其个位上的数与十位上的数得到的新数为d,则d+d=(10x+y)+(10y+x)=11x+11y=11(x+y)=66,x,y都是自然数,且1xy9,满足条件的“吉祥数”有15、24、33M(15)=,M(24)=,M(33)=,所有“吉祥数”中M(d)的最大值为【点睛】本题考查了分解因式的应用,根据示例进行分解因式是解题的关键

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁