2021-2022学年人教版九年级数学下册第二十七章-相似同步测评试题(含解析).docx

上传人:知****量 文档编号:28144895 上传时间:2022-07-26 格式:DOCX 页数:36 大小:741.16KB
返回 下载 相关 举报
2021-2022学年人教版九年级数学下册第二十七章-相似同步测评试题(含解析).docx_第1页
第1页 / 共36页
2021-2022学年人教版九年级数学下册第二十七章-相似同步测评试题(含解析).docx_第2页
第2页 / 共36页
点击查看更多>>
资源描述

《2021-2022学年人教版九年级数学下册第二十七章-相似同步测评试题(含解析).docx》由会员分享,可在线阅读,更多相关《2021-2022学年人教版九年级数学下册第二十七章-相似同步测评试题(含解析).docx(36页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、人教版九年级数学下册第二十七章-相似同步测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在平行四边形ABCD中,点E是边AD上的一点,且AE2ED,EC交对角线BD于点F,则( )A6B18C4

2、D92、如图,直线abc,直线m分别交直线a,b,c于点A,B,C,直线n分别交直线a,b,c于点D,E,F若,则的值为()ABC2D33、如图,与位似,点为位似中心已知,则与的面积比为( )ABCD4、如图,在RtABC中,C90,AB10,BC8点P是边AC上一动点,过点P作PQAB交BC于点Q,D为线段PQ的中点,当BD平分ABC时,AP的长度为( )ABCD5、若,则为( )A1:2B2:1C2:3D1:36、如图,ADBECF,AB3,BC2,DE3.6,则EF的值为()A1.8B2.4C4.8D5.47、如图,在ABC中,点D,E分别是AC和BC的中点,连接AE,BD交于点F,则下

3、列结论中正确的是( )ABCD8、如图,已知矩形ABCD中,AB3,BE2,EFBC若四边形EFDC与四边形BEFA相似而不全等,则CE的值为( )AB6CD99、如图,在中,点为边上一点,将沿直线翻折得到,与边交于点E,若,点为中点,则的长为( )AB6CD10、下列各线段的长度成比例的是( )A2、5、6、8B1、2、3、4C3、6、7、9D3、6、9、18第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在中,D为AB边上的一点,要使成立,还需要添加一个条件,你添加的条件是_2、如图,RtABC,ACB90,ACBC3,以C为顶点的正方形CDEF(C、D、E、

4、F四个顶点按逆时针方向排列)可以绕点C自由转动,且CD2,连接AF,BD,在正方形CDEF旋转过程中,BD+AD的最小值为_3、如图,在中,E为CD上一点,连结BE并延长交AD延长线于点F如果,那么_4、如图,在ABC中,D、E分别是边BC、AC上的点,AD与BE相交于点F,若E为AC的中点,BD:DC2:3,则AF:FD的值是 _5、如图,在RtABC中,ACB=90,BC=3,AC=4,F为AB上的点,联结CF.将ACF沿直线CF翻折,点A的对称点为E,若EFCB,则FE=_三、解答题(5小题,每小题10分,共计50分)1、已知:如图,在平面直角坐标系中,点A,B分别在x,y轴上,且OA,

5、OB的长(OAOB)是一元二次方程x27x120的两根(1)求点A,B的坐标及线段AB的长;(2)过点B作BCAB,交x轴于点C,求点C的坐标;(3)在(2)的条件下,如果P,Q分别是线段AB和AC上的动点,连接PQ,设APCQx,问是否存在这样的x,使得APQ与ABC相似?若存在,请直接写出x的值;若不存在,请说明理由2、如图,在正方形ABCD中,F是BC边上一点,连接AF,以AF为对角线作正方形AEFG,边FG与正方形ABCD的对角线AC相交于点H,连接DG(1)若,则的度数为 ;(2)求证:GDACCFCD3、如图,内接于O,且为O的直径,交于点,在的延长线上取点,使得DCEB(1)求证

6、:是O的切线;(2)若,求AE的长4、如图,在RtABC中,ACB90,CDAB于点D,点E是直线AC上一动点,连接DE,过点D作FDED,交直线BC于点F(1)探究发现:如图1,若mn,点E在线段AC上,则 ;(2)数学思考:如图2,若点E在线段AC上,则 (用含m,n的代数式表示);当点E在直线AC上运动时,中的结论是否仍然成立?请仅就图3的情形给出证明;(3)拓展应用:若AC,BC2,DF4,请直接写出CE的长5、已知,在平面直角坐标系中,点O为坐标原点,A点坐标为,B点坐标为,且满足(1)如图1,求、的长;(2)如图2,P是y轴负半轴上一点,点C在第二象限,连接、,且,设,请用含t的式

7、子表示的面积;(3)如图3,在(2)的条件下,作轴交的延长线于点D,与y轴交于点E,若E是的中点,求t值-参考答案-一、单选题1、B【解析】【分析】先求解,再利用平行四边形的性质证明,得到,再利用相似三角形面积比等于相似比的平方得出两个三角形的面积关系可得答案【详解】解:AE=2ED,AD=AE+DE=3DE, ,四边形ABCD为平行四边形, ADBC,BC=AD, DEF=BCF,EDF=CBF, , , 故选:B【点睛】本题主要考查了相似三角形的判定与性质,平行四边形的性质,相似两个三角形的面积之间的关系,掌握以上知识是解题的关键2、A【解析】【分析】先由得出,再根据平行线分线段成比例定理

8、即可得到结论【详解】解:,故选:A【点睛】本题考查了平行线分线段成比例定理,解题的关键是掌握三条平行线截两条直线,所得的对应线段成比例3、D【解析】【分析】根据相似比等于位似比,面积比等于相似比的平方即可求解【详解】解:与位似,点为位似中心已知,与的相似比为与的面积比为故选D【点睛】本题考查了位似图形的性质,相似三角形的性质,掌握位似比等于相似比是解题的关键4、B【解析】【分析】根据勾股定理求出AC,根据平行线的性质、角平分线的定义得到QDBQ,证明CPQCAB,根据相似三角形的性质计算即可【详解】解:设BQx,在RtABC中,C90,AB10,BC8,由勾股定理得,BD平分ABC,QBDAB

9、D,PQAB,QDBABD,QBDQDB,可设QDBQx,则CQ=8-x,D为线段PQ的中点,QP2QD2x,PQAB,CPQCAB,即解得:,APCACP,故选B【点睛】本题主要考查了角平分线的定义,平行线的性质,等腰三角形的性质与判定,相似三角形的性质与判定,勾股定理,熟练掌握相似三角形的性质与判定条件是解题的关键5、A【解析】【分析】可写成的形式,解得的值,即可得到的值【详解】解:可写成故选A【点睛】本题考察了比例,多项式与单项式的除法解题的关键在于将比例的符号作为除号或分号进行处理6、B【解析】【分析】根据平行线分线段成比例定理即可得出答案【详解】,故选:【点睛】本题考查了平行线分线段

10、成比例定理,掌握定理的内容是解题的关键7、D【解析】【分析】根据三角形的中位线的性质和相似三角形的判定和性质定理即可得到结论【详解】解:点D,E分别是AC和BC的中点,DEBC,DEFBFA,故A选项错误;故B选项错误;DEFBAF,故C选项错误; D为AC的中点,AD=CD ,故D选项正确;故选:D【点睛】本题考查了三角形的中位线的性质,相似三角形的判定和性质,正确的识别图形是解题的关键8、A【解析】【分析】设CE=x,由四边形EFDC与四边形BEFA相似,根据相似多边形对应边的比相等列出比例式,求解即可【详解】解:设CE=x,四边形EFDC与四边形BEFA相似,AB=3,BE=2,EF=A

11、B,解得:x=4.5,故选:A【点睛】本题考查了相似多边形的性质,本题的关键是根据四边形EFDC与四边形BEFA相似得到比例式9、A【解析】【分析】由折叠的性质可得,然后证明,得到,设,即可推出,从而得到,则,从而得到,再由,求解即可【详解】解:由折叠的性质可得,AB=AC,B=C,又,E是CD的中点,DE=CE,设,解得,故选A【点睛】本题主要考查了等腰三角形的性质,相似三角形的性质与判定,折叠的性质,解题的关键在于能够熟练掌握相似三角形的性质与判定条件10、D【解析】【分析】如果其中两条线段的乘积等于另外两条线段的乘积,则四条线段叫成比例线段,据此进行判断即可【详解】解:A、2856,故本

12、选项错误;B、1423,故本选项错误;C、3967,故本选项错误;D、318=69,故本选项正确故选:D【点睛】考查了比例线段,根据成比例线段的概念,注意在相乘的时候,最小的和最大的相乘,另外两个相乘,看它们的积是否相等二、填空题1、或【解析】【分析】根据图形可以看出两个三角形有一个公共角,相似证明中,有两个角对应相等即可证明两三角形相似,即添加对应角相等即可【详解】解:由图可知,在中,添加的条件为:或故答案为:或【点睛】本题主要考查三角形相似的判定,掌握判定相似的条件是解题的关键2、#【解析】【分析】在AC上截取一点M,使得CM=利用相似三角形的性质证明DM=AD,推出BD+AD=BD+DM

13、,推出当B,D,M共线时,BD+AD的值最小,即可解决问题;【详解】解:如图,在AC上截取一点M,使得CM=连接DM,BM CD=2,CM=,CA=3,CD2=CMCA,DCM=ACD,DCMACD,DM=AD,BD+AD=BD+DM,当B,D,M共线时,BD+AD的值最小,最小值=故答案为:【点睛】本题考查正方形的性质、相似三角形的判定和性质、两点之间线段最短、勾股定理等知识,解题的关键是学会由转化的思想思考问题3、4:25#【解析】【分析】根据已知可得到相似三角形,从而可得到其相似比,再根据相似三角形的面积比等于相似比的平方就可得到答案【详解】解:如图,四边形ABCD是平行四边形,DCAB

14、,CDABDFEAFB,DE:EC2:3,DE:DCDE:AB2:5,故答案为:4:25或 【点睛】本题考查的是相似三角形的判定与性质及平行四边形的性质,熟知相似三角形边长的比等于相似比,面积的比等于相似比的平方是解答此题的关键4、#2.5【解析】【分析】过D作DHAC交BE于H,根据相似三角形的性质即可得到结论【详解】解:过D作DHAC交BE于H,DHFAEF,BDHBCE,若E为AC的中点,CEAE,BD:DC2:3,BD:BC2:5,DF:AF2:5,AF:FD故答案为:【点睛】本题考查了三角形相似的判定和性质,合理添加辅助线,正确选择比例式是解题的关键5、2【解析】【分析】根据勾股定理

15、求出,由等面积法求出,根据相似三角形判定证明,由性质建立等式求出即可【详解】解:根据题意作图如下:由勾股定理得:,根据折叠的性质得:,解得:,即,解得:,故答案是:2【点睛】本题考查了折叠问题,三角形相似、勾股定理,解题的关键是添加辅助线,构造相似三角形三、解答题1、(1)A(-4,0);B(0,3);AB=5;(2);(3)存在,或【解析】【分析】(1)解一元二次方程即可得OA、OB的长,再根据点A、B在坐标轴上的位置即可求得A、B两点的坐标,由勾股定理即可求得线段AB的长;(2)利用相似三角形的判定与性质可求得OC的长,从而可求得点C的坐标;(3)分两种情况考虑:APQABC;APQACB

16、,然后由相似三角形的性质即可求得x的值【详解】(1)解x27x120得:,OAOB OA=4,OB=3点A在x轴负半轴上,点B在y轴正半轴上A(-4,0),B(0,3)由勾股定理得(2)BCAB,OBACBOA=COB=ABC=90ABO+BAO=ABO+CBOBAO=CBOABOBCO即点C在x轴正半轴上(3)存在,若APQABC则有,即APAC=ABAQ解得:若APQACB,即APAB=ACAQ解得:综上所述,满足条件的x的值为或【点睛】本题考查了解一元二次方程,相似三角形的判定与性质,勾股定理等知识,运用了分类讨论思想,关键是相似三角形的判定与性质的运用,注意分类讨论2、(1);(2)见

17、详解【解析】【分析】(1)由四边形ABCD,AEFG是正方形,得到,于是得到,推出,由于,于是得到结论;(2)由正方形的性质可得,由,可证,由此证出;【详解】(1)四边形ABCD,四边形AEFG为正方形故答案为:(2)四边形ABCD,四边形AEFG为正方形 ,【点睛】本题主要考查了正方形的性质,勾股定理和相似三角形的性质与判定,解题的关键在于能够熟练掌握相关知识进行求解3、(1)证明见详解;(2)【解析】【分析】(1)连接OC,由等腰三角形的性质得出DCE=DEC,A=ACO,可得出DCE+ACO=90,则可得出结论(2)过点D作DFCE于点F,由勾股定理求出AB=5,证明AOEACB,得出比

18、例线段,即可求出AE【详解】(1)证明:连接OC,如图1,DC=DE,DCE=DEC,DEC=AEO,DCE=AEO,OAOE,A+AEO=90,DCE+A=90,OA=OC,A=ACO,DCE+ACO=90,OCDC,CD是O的切线;(2)如图2,过点D作DFCE于点F,AB为O的直径,ACB=90,ACB=AOE,AC=2,AB=,又A=A,AOEACB,【点睛】本题考查了等腰三角形的性质和判定,相似三角形的判定与性质,三角形内角和定理,切线的判定,圆周角定理等知识点,能综合运用知识点进行推理是解此题的关键4、(1)1;(2);(3)或【解析】【分析】(1)先用等量代换判断出,得到,再判断

19、出即可;(2)方法和一样,先用等量代换判断出,得到,再判断出即可;(3)由的结论得出,判断出,求出DE,再利用勾股定理,计算出即可【详解】解:当时,即:,即,即,成立如图3,又,即,由有,如图4图5图6,连接EF在中,如图4,当E在线段AC上时,在中,根据勾股定理得,或舍如图5,当E在AC延长线上时,在中,根据勾股定理得,或舍,如图6,当E在CA延长线上时,在中,根据勾股定理得,或(舍),综上:或【点睛】本题是三角形综合题,主要考查了三角形相似的性质和判定,勾股定理,判断相似是解决本题的关键,求CE是本题的难点5、(1)OA=6,OB=6;(2)SAPC=12t2+3t;(3)t=2【解析】【

20、分析】(1)根据平方和二次根式的非负性计算即可;(2)过点C作CFy轴,证明BOPPFC,即可得解;(3)过点C作CFy轴,由全等可得CF=PO=t,证明CEFBEO,得到EFOE=CFOB,即可得解;【详解】(1),a-62+b-6=0,a-6=0,b-6=0,a=6,b=6,OA=6,OB=6;(2)过点C作CFy轴,BPO+CPF=90,OBP+BPO=90,CPF=OBP,在BOP和PFC中,BP=PCBOP=PFC=90OBP=CPF,BOPPFC,CF=PO=t,AP=AO+OP=6+t,SAPC=12CFAP=12t6+t=12t2+3t;(3)过点C作CFy轴,由(2)可知BOPPFC,CF=PO=t,FP=OB=6,ADBO,E是BD的中点,D=EBO,DE=BE,在和OBE中,D=EBODE=BEAED=OEB,ADEOBE,AE=EO=3,EF=PF-OP-OE=3-t,CFBO,CEFBEO,EFOE=CFOB,即3-t3=t6,t=2【点睛】本题主要考查了位置与坐标,完全平方公式,全等三角形的判定与性质,相似三角形的判定与性质,二次根式有意义的条件,准确利用平行线的性质证明三角形全等求解是解题的关键

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁