《2018年度中考数学专栏材料二次函数.doc》由会员分享,可在线阅读,更多相关《2018年度中考数学专栏材料二次函数.doc(122页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、.*2018中考数专题二次函数(共40题)1如图,抛物线y=x2+bx+c与直线AB交于A(4,4),B(0,4)两点,直线AC:y=x6交y轴于点C点E是直线AB上的动点,过点E作EFx轴交AC于点F,交抛物线于点G(1)求抛物线y=x2+bx+c的表达式;(2)连接GB,EO,当四边形GEOB是平行四边形时,求点G的坐标;(3)在y轴上存在一点H,连接EH,HF,当点E运动到什么位置时,以A,E,F,H为顶点的四边形是矩形?求出此时点E,H的坐标;在的前提下,以点E为圆心,EH长为半径作圆,点M为E上一动点,求AM+CM它的最小值2如图,抛物线y=a(x1)(x3)与x轴交于A,B两点,与
2、y轴的正半轴交于点C,其顶点为D(1)写出C,D两点的坐标(用含a的式子表示);(2)设SBCD:SABD=k,求k的值;(3)当BCD是直角三角形时,求对应抛物线的解析式3如图,直线y=kx+b(k、b为常数)分别与x轴、y轴交于点A(4,0)、B(0,3),抛物线y=x2+2x+1与y轴交于点C(1)求直线y=kx+b的函数解析式;(2)若点P(x,y)是抛物线y=x2+2x+1上的任意一点,设点P到直线AB的距离为d,求d关于x的函数解析式,并求d取最小值时点P的坐标;(3)若点E在抛物线y=x2+2x+1的对称轴上移动,点F在直线AB上移动,求CE+EF的最小值4如图,已知抛物线y=x
3、2+bx+c与y轴相交于点A(0,3),与x正半轴相交于点B,对称轴是直线x=1(1)求此抛物线的解析式以及点B的坐标(2)动点M从点O出发,以每秒2个单位长度的速度沿x轴正方向运动,同时动点N从点O出发,以每秒3个单位长度的速度沿y轴正方向运动,当N点到达A点时,M、N同时停止运动过动点M作x轴的垂线交线段AB于点Q,交抛物线于点P,设运动的时间为t秒当t为何值时,四边形OMPN为矩形当t0时,BOQ能否为等腰三角形?若能,求出t的值;若不能,请说明理由5如图,抛物线y=x2+bx+c与x轴分别交于A(1,0),B(5,0)两点(1)求抛物线的解析式;(2)在第二象限内取一点C,作CD垂直X
4、轴于点D,链接AC,且AD=5,CD=8,将RtACD沿x轴向右平移m个单位,当点C落在抛物线上时,求m的值;(3)在(2)的条件下,当点C第一次落在抛物线上记为点E,点P是抛物线对称轴上一点试探究:在抛物线上是否存在点Q,使以点B、E、P、Q为顶点的四边形是平行四边形?若存在,请出点Q的坐标;若不存在,请说明理由6我们知道,经过原点的抛物线可以用y=ax2+bx(a0)表示,对于这样的抛物线:(1)当抛物线经过点(2,0)和(1,3)时,求抛物线的表达式;(2)当抛物线的顶点在直线y=2x上时,求b的值;(3)如图,现有一组这样的抛物线,它们的顶点A1、A2、,An在直线y=2x上,横坐标依
5、次为1,2,3,n(n为正整数,且n12),分别过每个顶点作x轴的垂线,垂足记为B1、B2,Bn,以线段AnBn为边向左作正方形AnBnCnDn,如果这组抛物线中的某一条经过点Dn,求此时满足条件的正方形AnBnCnDn的边长7如图,在平面直角坐标系中,二次函数的图象交坐标轴于A(1,0),B(4,0),C(0,4)三点,点P是直线BC下方抛物线上一动点(1)求这个二次函数的解析式;(2)是否存在点P,使POC是以OC为底边的等腰三角形?若存在,求出P点坐标;若不存在,请说明理由;(3)动点P运动到什么位置时,PBC面积最大,求出此时P点坐标和PBC的最大面积8如图,在平面直角坐标系中,矩形O
6、ABC的顶点A,C分别在x轴,y轴的正半轴上,且OA=4,OC=3,若抛物线经过O,A两点,且顶点在BC边上,对称轴交BE于点F,点D,E的坐标分别为(3,0),(0,1)(1)求抛物线的解析式;(2)猜想EDB的形状并加以证明;(3)点M在对称轴右侧的抛物线上,点N在x轴上,请问是否存在以点A,F,M,N为顶点的四边形是平行四边形?若存在,请求出所有符合条件的点M的坐标;若不存在,请说明理由9如图,在平面直角坐标系中,直线y=x+2与x轴交于点A,与y轴交于点C,抛物线y=x2+bx+c经过A、C两点,与x轴的另一交点为点B(1)求抛物线的函数表达式;(2)点D为直线AC上方抛物线上一动点;
7、连接BC、CD,设直线BD交线段AC于点E,CDE的面积为S1,BCE的面积为S2,求的最大值;过点D作DFAC,垂足为点F,连接CD,是否存在点D,使得CDF中的某个角恰好等于BAC的2倍?若存在,求点D的横坐标;若不存在,请说明理由10已知二次函数y=x2+bx+c+1,当b=1时,求这个二次函数的对称轴的方程; 若c=b22b,问:b为何值时,二次函数的图象与x轴相切?若二次函数的图象与x轴交于点A(x1,0),B(x2,0),且x1x2,与y轴的正半轴交于点M,以AB为直径的半圆恰好过点M,二次函数的对称轴l与x轴、直线BM、直线AM分别交于点D、E、F,且满足=,求二次函数的表达式1
8、1如图,抛物线y=x2+bx+c与x轴交于点A和点B,与y轴交于点C,点B坐标为(6,0),点C坐标为(0,6),点D是抛物线的顶点,过点D作x轴的垂线,垂足为E,连接BD(1)求抛物线的解析式及点D的坐标;(2)点F是抛物线上的动点,当FBA=BDE时,求点F的坐标;(3)若点M是抛物线上的动点,过点M作MNx轴与抛物线交于点N,点P在x轴上,点Q在坐标平面内,以线段MN为对角线作正方形MPNQ,请写出点Q的坐标12抛物线y=ax2+bx+3经过点A(1,0)和点B(5,0)(1)求该抛物线所对应的函数解析式;(2)该抛物线与直线y=x+3相交于C、D两点,点P是抛物线上的动点且位于x轴下方
9、,直线PMy轴,分别与x轴和直线CD交于点M、N连结PC、PD,如图1,在点P运动过程中,PCD的面积是否存在最大值?若存在,求出这个最大值;若不存在,说明理由;连结PB,过点C作CQPM,垂足为点Q,如图2,是否存在点P,使得CNQ与PBM相似?若存在,求出满足条件的点P的坐标;若不存在,说明理由13如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a0)与y轴交与点C(0,3),与x轴交于A、B两点,点B坐标为(4,0),抛物线的对称轴方程为x=1(1)求抛物线的解析式;(2)点M从A点出发,在线段AB上以每秒3个单位长度的速度向B点运动,同时点N从B点出发,在线段BC上以每秒1个单位
10、长度的速度向C点运动,其中一个点到达终点时,另一个点也停止运动,设MBN的面积为S,点M运动时间为t,试求S与t的函数关系,并求S的最大值;(3)在点M运动过程中,是否存在某一时刻t,使MBN为直角三角形?若存在,求出t值;若不存在,请说明理由14如图,已知抛物线y=ax2+bx+c过点A(3,0),B(2,3),C(0,3),其顶点为D(1)求抛物线的解析式;(2)设点M(1,m),当MB+MD的值最小时,求m的值;(3)若P是抛物线上位于直线AC上方的一个动点,求APC的面积的最大值;(4)若抛物线的对称轴与直线AC相交于点N,E为直线AC上任意一点,过点E作EFND交抛物线于点F,以N,
11、D,E,F为顶点的四边形能否为平行四边形?若能,求点E的坐标;若不能,请说明理由15如图,已知二次函数y=ax2+bx+c(a0)的图象经过A(1,0)、B(4,0)、C(0,2)三点(1)求该二次函数的解析式;(2)点D是该二次函数图象上的一点,且满足DBA=CAO(O是坐标原点),求点D的坐标;(3)点P是该二次函数图象上位于第一象限上的一动点,连接PA分别交BC、y轴于点E、F,若PEB、CEF的面积分别为S1、S2,求S1S2的最大值16如图,抛物线y=x2+bx+c经过B(1,0),D(2,5)两点,与x轴另一交点为A,点H是线段AB上一动点,过点H的直线PQx轴,分别交直线AD、抛
12、物线于点Q,P(1)求抛物线的解析式;(2)是否存在点P,使APB=90,若存在,求出点P的横坐标,若不存在,说明理由;(3)连接BQ,一动点M从点B出发,沿线段BQ以每秒1个单位的速度运动到Q,再沿线段QD以每秒个单位的速度运动到D后停止,当点Q的坐标是多少时,点M在整个运动过程中用时t最少?17如图1,抛物线C1:y=x2+ax与C2:y=x2+bx相交于点O、C,C1与C2分别交x轴于点B、A,且B为线段AO的中点(1)求 的值;(2)若OCAC,求OAC的面积;(3)抛物线C2的对称轴为l,顶点为M,在(2)的条件下:点P为抛物线C2对称轴l上一动点,当PAC的周长最小时,求点P的坐标
13、;如图2,点E在抛物线C2上点O与点M之间运动,四边形OBCE的面积是否存在最大值?若存在,求出面积的最大值和点E的坐标;若不存在,请说明理由18如图,已知直角坐标系中,A、B、D三点的坐标分别为A(8,0),B(0,4),D(1,0),点C与点B关于x轴对称,连接AB、AC(1)求过A、B、D三点的抛物线的解析式;(2)有一动点E从原点O出发,以每秒2个单位的速度向右运动,过点E作x轴的垂线,交抛物线于点P,交线段CA于点M,连接PA、PB,设点E运动的时间为t(0t4)秒,求四边形PBCA的面积S与t的函数关系式,并求出四边形PBCA的最大面积;(3)抛物线的对称轴上是否存在一点H,使得A
14、BH是直角三角形?若存在,请直接写出点H的坐标;若不存在,请说明理由19如图1,在平面直角坐标系中,已知抛物线y=ax2+bx5与x轴交于A(1,0),B(5,0)两点,与y轴交于点C(1)求抛物线的函数表达式;(2)若点D是y轴上的一点,且以B,C,D为顶点的三角形与ABC相似,求点D的坐标;(3)如图2,CEx轴与抛物线相交于点E,点H是直线CE下方抛物线上的动点,过点H且与y轴平行的直线与BC,CE分别相交于点F,G,试探究当点H运动到何处时,四边形CHEF的面积最大,求点H的坐标及最大面积;(4)若点K为抛物线的顶点,点M(4,m)是该抛物线上的一点,在x轴,y轴上分别找点P,Q,使四
15、边形PQKM的周长最小,求出点P,Q的坐标20如图,已知抛物线y=ax2+bx+c(a0)的图象的顶点坐标是(2,1),并且经过点(4,2),直线y=x+1与抛物线交于B,D两点,以BD为直径作圆,圆心为点C,圆C与直线m交于对称轴右侧的点M(t,1),直线m上每一点的纵坐标都等于1(1)求抛物线的解析式;(2)证明:圆C与x轴相切;(3)过点B作BEm,垂足为E,再过点D作DFm,垂足为F,求BE:MF的值21如图1,抛物线y=x2+bx+c经过A(2,0)、B(0,2)两点,点C在y轴上,ABC为等边三角形,点D从点A出发,沿AB方向以每秒2个单位长度的速度向终点B运动,设运动时间为t秒(
16、t0),过点D作DEAC于点E,以DE为边作矩形DEGF,使点F在x轴上,点G在AC或AC的延长线上(1)求抛物线的解析式;(2)将矩形DEGF沿GF所在直线翻折,得矩形DEGF,当点D的对称点D落在抛物线上时,求此时点D的坐标;(3)如图2,在x轴上有一点M(2,0),连接BM、CM,在点D的运动过程中,设矩形DEGF与四边形ABMC重叠部分的面积为S,直接写出S与t之间的函数关系式,并写出自变量t的取值范围22如图,在平面直角坐标系中,ABC为等腰直角三角形,ACB=90,抛物线y=x2+bx+c经过A,B两点,其中点A,C的坐标分别为(1,0),(4,0),抛物线的顶点为点D(1)求抛物
17、线的解析式;(2)点E是直角三角形ABC斜边AB上的一个动点(不与A,B重合),过点E作x轴的垂线,交抛物线于点F,当线段FE的长度最大时,求点E的坐标;(3)在(2)的条件下,抛物线上是否存在一点P,使PEF是以EF为直角边的直角三角形?若存在,求出所有点P的坐标;若不存在,请说明理由23如图1,点A坐标为(2,0),以OA为边在第一象限内作等边OAB,点C为x轴上一动点,且在点A右侧,连接BC,以BC为边在第一象限内作等边BCD,连接AD交BC于E(1)直接回答:OBC与ABD全等吗?试说明:无论点C如何移动,AD始终与OB平行;(2)当点C运动到使AC2=AEAD时,如图2,经过O、B、
18、C三点的抛物线为y1试问:y1上是否存在动点P,使BEP为直角三角形且BE为直角边?若存在,求出点P坐标;若不存在,说明理由;(3)在(2)的条件下,将y1沿x轴翻折得y2,设y1与y2组成的图形为M,函数y=x+m的图象l与M有公共点试写出:l与M的公共点为3个时,m的取值24如图,抛物线y=ax22x+c(a0)与x轴、y轴分别交于点A,B,C三点,已知点A(2,0),点C(0,8),点D是抛物线的顶点(1)求抛物线的解析式及顶点D的坐标;(2)如图1,抛物线的对称轴与x轴交于点E,第四象限的抛物线上有一点P,将EBP沿直线EP折叠,使点B的对应点B落在抛物线的对称轴上,求点P的坐标;(3
19、)如图2,设BC交抛物线的对称轴于点F,作直线CD,点M是直线CD上的动点,点N是平面内一点,当以点B,F,M,N为顶点的四边形是菱形时,请直接写出点M的坐标25抛物线y=x2+bx+c与x轴交于A(1,0),B(m,0),与y轴交于C(1)若m=3,求抛物线的解析式,并写出抛物线的对称轴;(2)如图1,在(1)的条件下,设抛物线的对称轴交x轴于D,在对称轴左侧的抛物线上有一点E,使SACE=SACD,求点E的坐标;(3)如图2,设F(1,4),FGy于G,在线段OG上是否存在点P,使OBP=FPG?若存在,求m的取值范围;若不存在,请说明理由26如图,M的圆心M(1,2),M经过坐标原点O,
20、与y轴交于点A经过点A的一条直线l解析式为:y=x+4与x轴交于点B,以M为顶点的抛物线经过x轴上点D(2,0)和点C(4,0)(1)求抛物线的解析式;(2)求证:直线l是M的切线;(3)点P为抛物线上一动点,且PE与直线l垂直,垂足为E;PFy轴,交直线l于点F,是否存在这样的点P,使PEF的面积最小若存在,请求出此时点P的坐标及PEF面积的最小值;若不存在,请说明理由27如图,抛物线y=ax2+bx+4交y轴于点A,并经过B(4,4)和C(6,0)两点,点D的坐标为(4,0),连接AD,BC,点E从点A出发,以每秒个单位长度的速度沿线段AD向点D运动,到达点D后,以每秒1个单位长度的速度沿
21、射线DC运动,设点E的运动时间为t秒,过点E作AB的垂线EF交直线AB于点F,以线段EF为斜边向右作等腰直角EFG(1)求抛物线的解析式;(2)当点G落在第一象限内的抛物线上时,求出t的值;(3)设点E从点A出发时,点E,F,G都与点A重合,点E在运动过程中,当BCG的面积为4时,直接写出相应的t值,并直接写出点G从出发到此时所经过的路径长28抛物线y=ax2+bx+c过A(2,3),B(4,3),C(6,5)三点(1)求抛物线的表达式;(2)如图,抛物线上一点D在线段AC的上方,DEAB交AC于点E,若满足=,求点D的坐标;(3)如图,F为抛物线顶点,过A作直线lAB,若点P在直线l上运动,
22、点Q在x轴上运动,是否存在这样的点P、Q,使得以B、P、Q为顶点的三角形与ABF相似,若存在,求P、Q的坐标,并求此时BPQ的面积;若不存在,请说明理由29如图,已知抛物线y=ax2+x+c与x轴交于A,B两点,与y轴交于丁C,且A(2,0),C(0,4),直线l:y=x4与x轴交于点D,点P是抛物线y=ax2+x+c上的一动点,过点P作PEx轴,垂足为E,交直线l于点F(1)试求该抛物线表达式;(2)如图(1),过点P在第三象限,四边形PCOF是平行四边形,求P点的坐标;(3)如图(2),过点P作PHy轴,垂足为H,连接AC求证:ACD是直角三角形;试问当P点横坐标为何值时,使得以点P、C、
23、H为顶点的三角形与ACD相似?30如图,已知抛物线y=ax22ax9a与坐标轴交于A,B,C三点,其中C(0,3),BAC的平分线AE交y轴于点D,交BC于点E,过点D的直线l与射线AC,AB分别交于点M,N(1)直接写出a的值、点A的坐标及抛物线的对称轴;(2)点P为抛物线的对称轴上一动点,若PAD为等腰三角形,求出点P的坐标;(3)证明:当直线l绕点D旋转时,+均为定值,并求出该定值31函数的图象与性质拓展学习片段展示:【问题】如图,在平面直角坐标系中,抛物线y=a(x2)2经过原点O,与x轴的另一个交点为A,则a= 【操作】将图中抛物线在x轴下方的部分沿x轴折叠到x轴上方,将这部分图象与
24、原抛物线剩余部分的图象组成的新图象记为G,如图直接写出图象G对应的函数解析式【探究】在图中,过点B(0,1)作直线l平行于x轴,与图象G的交点从左至右依次为点C,D,E,F,如图求图象G在直线l上方的部分对应的函数y随x增大而增大时x的取值范围【应用】P是图中图象G上一点,其横坐标为m,连接PD,PE直接写出PDE的面积不小于1时m的取值范围32如图,在平面直角坐标系中,矩形OABC的边OA、OC分别在x轴、y轴上,点B坐标为(4,t)(t0),二次函数y=x2+bx(b0)的图象经过点B,顶点为点D(1)当t=12时,顶点D到x轴的距离等于 ;(2)点E是二次函数y=x2+bx(b0)的图象
25、与x轴的一个公共点(点E与点O不重合),求OEEA的最大值及取得最大值时的二次函数表达式;(3)矩形OABC的对角线OB、AC交于点F,直线l平行于x轴,交二次函数y=x2+bx(b0)的图象于点M、N,连接DM、DN,当DMNFOC时,求t的值33在平面直角坐标系中,直线y=x+1交y轴于点B,交x轴于点A,抛物线y=x2+bx+c经过点B,与直线y=x+1交于点C(4,2)(1)求抛物线的解析式;(2)如图,横坐标为m的点M在直线BC上方的抛物线上,过点M作MEy轴交直线BC于点E,以ME为直径的圆交直线BC于另一点D,当点E在x轴上时,求DEM的周长(3)将AOB绕坐标平面内的某一点按顺
26、时针方向旋转90,得到A1O1B1,点A,O,B的对应点分别是点A1,O1,B1,若A1O1B1的两个顶点恰好落在抛物线上,请直接写出点A1的坐标34已知,抛物线y=ax2+bx+3(a0)与x轴交于A(3,0)、B两点,与y轴交于点C,抛物线的对称轴是直线x=1,D为抛物线的顶点,点E在y轴C点的上方,且CE=(1)求抛物线的解析式及顶点D的坐标;(2)求证:直线DE是ACD外接圆的切线;(3)在直线AC上方的抛物线上找一点P,使SACP=SACD,求点P的坐标;(4)在坐标轴上找一点M,使以点B、C、M为顶点的三角形与ACD相似,直接写出点M的坐标35如图,在平面直角坐标系中,二次函数y=
27、x2+bx+c的图象与坐标轴交于A,B,C三点,其中点A的坐标为(3,0),点B的坐标为(4,0),连接AC,BC动点P从点A出发,在线段AC上以每秒1个单位长度的速度向点C作匀速运动;同时,动点Q从点O出发,在线段OB上以每秒1个单位长度的速度向点B作匀速运动,当其中一点到达终点时,另一点随之停止运动,设运动时间为t秒连接PQ(1)填空:b= ,c= ;(2)在点P,Q运动过程中,APQ可能是直角三角形吗?请说明理由;(3)在x轴下方,该二次函数的图象上是否存在点M,使PQM是以点P为直角顶点的等腰直角三角形?若存在,请求出运动时间t;若不存在,请说明理由;(4)如图,点N的坐标为(,0),
28、线段PQ的中点为H,连接NH,当点Q关于直线NH的对称点Q恰好落在线段BC上时,请直接写出点Q的坐标36如图,已知直线y=x+3与x轴、y轴分别交于A,B两点,抛物线y=x2+bx+c经过A,B两点,点P在线段OA上,从点O出发,向点A以每秒1个单位的速度匀速运动;同时,点Q在线段AB上,从点A出发,向点B以每秒个单位的速度匀速运动,连接PQ,设运动时间为t秒(1)求抛物线的解析式;(2)问:当t为何值时,APQ为直角三角形;(3)过点P作PEy轴,交AB于点E,过点Q作QFy轴,交抛物线于点F,连接EF,当EFPQ时,求点F的坐标;(4)设抛物线顶点为M,连接BP,BM,MQ,问:是否存在t
29、的值,使以B,Q,M为顶点的三角形与以O,B,P为顶点的三角形相似?若存在,请求出t的值;若不存在,请说明理由37如图,直线y=x+3与x轴,y轴分别相交于点B,C,经过B,C两点的抛物线y=ax2+bx+c与x轴的另一交点为A,顶点为P,且对称轴是直线x=2(1)求该抛物线的函数表达式;(2)请问在抛物线上是否存在点Q,使得以点B,C,Q为顶点的三角形为直角三角形?若存在,请求出点Q的坐标;若不存在,请说明理由;(3)过S(0,4)的动直线l交抛物线于M,N两点,试问抛物线上是否存在定点T,使得不过定点T的任意直线l都有MTN=90?若存在,请求出点T的坐标;若不存在,请说明理由38如图,抛
30、物线C1:y1=ax2+2ax(a0)与x轴交于点A,顶点为点P(1)直接写出抛物线C1的对称轴是 ,用含a的代数式表示顶点P的坐标 ;(2)把抛物线C1绕点M(m,0)旋转180得到抛物线C2(其中m0),抛物线C2与x轴右侧的交点为点B,顶点为点Q当m=1时,求线段AB的长;在的条件下,是否存在ABP为等腰三角形,若存在请求出a的值,若不存在,请说明理由;当四边形APBQ为矩形时,请求出m与a之间的数量关系,并直接写出当a=3时矩形APBQ的面积39已知二次函数y=ax24ax+a2+2(a0)图象的顶点G在直线AB上,其中A(,0)、B(0,3),对称轴与x轴交于点E(1)求二次函数y=
31、ax24ax+a2+2的关系式;(2)点P在对称轴右侧的抛物线上,且AP平分四边形GAEP的面积,求点P坐标;(3)在x轴上方,是否存在整数m,使得当x时,抛物线y随x增大而增大?若存在,求出所有满足条件的m值;若不存在,请说明理由40如图,在平面直角坐标系中,点O为坐标原点,抛物线y=x2+bx+c交x轴于A、B两点,交y轴于点C,直线y=x3经过B、C两点(1)求抛物线的解析式;(2)过点C作直线CDy轴交抛物线于另一点D,点P是直线CD下方抛物线上的一个动点,且在抛物线对称轴的右侧,过点P作PEx轴于点E,PE交CD于点F,交BC于点M,连接AC,过点M作MNAC于点N,设点P的横坐标为
32、t,线段MN的长为d,求d与t之间的函数关系式(不要求写出自变量t的取值范围);(3)在(2)的条件下,连接PC,过点B作BQPC于点Q(点Q在线段PC上),BQ交CD于点T,连接OQ交CD于点S,当ST=TD时,求线段MN的长参考答案与试题解析(共40题)1(2017兰州)如图,抛物线y=x2+bx+c与直线AB交于A(4,4),B(0,4)两点,直线AC:y=x6交y轴于点C点E是直线AB上的动点,过点E作EFx轴交AC于点F,交抛物线于点G(1)求抛物线y=x2+bx+c的表达式;(2)连接GB,EO,当四边形GEOB是平行四边形时,求点G的坐标;(3)在y轴上存在一点H,连接EH,HF
33、,当点E运动到什么位置时,以A,E,F,H为顶点的四边形是矩形?求出此时点E,H的坐标;在的前提下,以点E为圆心,EH长为半径作圆,点M为E上一动点,求AM+CM它的最小值【解答】解:(1)点A(4,4),B(0,4)在抛物线y=x2+bx+c上,抛物线的解析式为y=x22x+4;(2)设直线AB的解析式为y=kx+n过点A,B,直线AB的解析式为y=2x+4,设E(m,2m+4),G(m,m22m+4),四边形GEOB是平行四边形,EG=OB=4,|m22m+42m4|=4,m=2或m=2+2或m=22,G(2,4)或(2+2,1212)或(22,12+12)(3)如图1,由(2)知,直线A
34、B的解析式为y=2x+4,设E(a,2a+4),直线AC:y=x6,F(a,a6),设H(0,p),以点A,E,F,H为顶点的四边形是矩形,直线AB的解析式为y=2x+4,直线AC:y=x6,ABAC,EF为对角线,(4+0)=(a+a),(4+p)=(2a+4a6),a=2,P=1,E(2,0)H(0,1);如图2,由知,E(2,0),H(0,1),A(4,4),EH=,AE=2,设AE交E于G,取EG的中点P,PE=,连接PC交E于M,连接EM,EM=EH=,=,=,=,PEM=MEA,PEMMEA,PM=AM,AM+CM的最小值=PC,设点P(p,2p+4),E(2,0),PE2=(p+
35、2)2+(2p+4)2=5(p+2)2,PE=,5(p+2)2=,p=或p=(由于E(2,0),所以舍去),P(,1),C(0,6),PC=,即:AM+CM=2(2017贵港)如图,抛物线y=a(x1)(x3)与x轴交于A,B两点,与y轴的正半轴交于点C,其顶点为D(1)写出C,D两点的坐标(用含a的式子表示);(2)设SBCD:SABD=k,求k的值;(3)当BCD是直角三角形时,求对应抛物线的解析式【解答】解:(1)在y=a(x1)(x3),令x=0可得y=3a,C(0,3a),y=a(x1)(x3)=a(x24x+3)=a(x2)2a,D(2,a);(2)在y=a(x1)(x3)中,令y
36、=0可解得x=1或x=3,A(1,0),B(3,0),AB=31=2,SABD=2a=a,如图,设直线CD交x轴于点E,设直线CD解析式为y=kx+b,把C、D的坐标代入可得,解得,直线CD解析式为y=2ax+3a,令y=0可解得x=,E(,0),BE=3=SBCD=SBEC+SBED=(3a+a)=3a,SBCD:SABD=(3a):a=3,k=3;(3)B(3,0),C(0,3a),D(2,a),BC2=32+(3a)2=9+9a2,CD2=22+(a3a)2=4+16a2,BD2=(32)2+a2=1+a2,BCDBCO90,BCD为直角三角形时,只能有CBD=90或CDB=90两种情况
37、,当CBD=90时,则有BC2+BD2=CD2,即9+9a2+1+a2=4+16a2,解得a=1(舍去)或a=1,此时抛物线解析式为y=x24x+3;当CDB=90时,则有CD2+BD2=BC2,即4+16a2+1+a2=9+9a2,解得a=(舍去)或a=,此时抛物线解析式为y=x22x+;综上可知当BCD是直角三角形时,抛物线的解析式为y=x24x+3或y=x22x+3(2017滨州)如图,直线y=kx+b(k、b为常数)分别与x轴、y轴交于点A(4,0)、B(0,3),抛物线y=x2+2x+1与y轴交于点C(1)求直线y=kx+b的函数解析式;(2)若点P(x,y)是抛物线y=x2+2x+
38、1上的任意一点,设点P到直线AB的距离为d,求d关于x的函数解析式,并求d取最小值时点P的坐标;(3)若点E在抛物线y=x2+2x+1的对称轴上移动,点F在直线AB上移动,求CE+EF的最小值【解答】解:(1)由题意可得,解得,直线解析式为y=x+3;(2)如图1,过P作PHAB于点H,过H作HQx轴,过P作PQy轴,两垂线交于点Q,则AHQ=ABO,且AHP=90,PHQ+AHQ=BAO+ABO=90,PHQ=BAO,且AOB=PQH=90,PQHBOA,=,设H(m,m+3),则PQ=xm,HQ=m+3(x2+2x+1),A(4,0),B(0,3),OA=4,OB=3,AB=5,且PH=d
39、,=,整理消去m可得d=x2x+=(x)2+,d与x的函数关系式为d=(x)2+,0,当x=时,d有最小值,此时y=()2+2+1=,当d取得最小值时P点坐标为(,);(3)如图2,设C点关于抛物线对称轴的对称点为C,由对称的性质可得CE=CE,CE+EF=CE+EF,当F、E、C三点一线且CF与AB垂直时CE+EF最小,C(0,1),C(2,1),由(2)可知当x=2时,d=(2)2+=,即CE+EF的最小值为4(2017广安)如图,已知抛物线y=x2+bx+c与y轴相交于点A(0,3),与x正半轴相交于点B,对称轴是直线x=1(1)求此抛物线的解析式以及点B的坐标(2)动点M从点O出发,以
40、每秒2个单位长度的速度沿x轴正方向运动,同时动点N从点O出发,以每秒3个单位长度的速度沿y轴正方向运动,当N点到达A点时,M、N同时停止运动过动点M作x轴的垂线交线段AB于点Q,交抛物线于点P,设运动的时间为t秒当t为何值时,四边形OMPN为矩形当t0时,BOQ能否为等腰三角形?若能,求出t的值;若不能,请说明理由【解答】解:(1)抛物线y=x2+bx+c对称轴是直线x=1,=1,解得b=2,抛物线过A(0,3),c=3,抛物线解析式为y=x2+2x+3,令y=0可得x2+2x+3=0,解得x=1或x=3,B点坐标为(3,0);(2)由题意可知ON=3t,OM=2t,P在抛物线上,P(2t,4
41、t2+4t+3),四边形OMPN为矩形,ON=PM,3t=4t2+4t+3,解得t=1或t=(舍去),当t的值为1时,四边形OMPN为矩形;A(0,3),B(3,0),OA=OB=3,且可求得直线AB解析式为y=x+3,当t0时,OQOB,当BOQ为等腰三角形时,有OB=QB或OQ=BQ两种情况,由题意可知OM=2t,Q(2t,2t+3),OQ=,BQ=|2t3|,又由题意可知0t1,当OB=QB时,则有|2t3|=3,解得t=(舍去)或t=;当OQ=BQ时,则有=|2t3|,解得t=;综上可知当t的值为或时,BOQ为等腰三角形5(2017宜宾)如图,抛物线y=x2+bx+c与x轴分别交于A(
42、1,0),B(5,0)两点(1)求抛物线的解析式;(2)在第二象限内取一点C,作CD垂直X轴于点D,链接AC,且AD=5,CD=8,将RtACD沿x轴向右平移m个单位,当点C落在抛物线上时,求m的值;(3)在(2)的条件下,当点C第一次落在抛物线上记为点E,点P是抛物线对称轴上一点试探究:在抛物线上是否存在点Q,使以点B、E、P、Q为顶点的四边形是平行四边形?若存在,请出点Q的坐标;若不存在,请说明理由【解答】解:(1)抛物线y=x2+bx+c与x轴分别交于A(1,0),B(5,0)两点,解得,抛物线解析式为y=x2+4x+5;(2)AD=5,且OA=1,OD=6,且CD=8,C(6,8),设
43、平移后的点C的对应点为C,则C点的纵坐标为8,代入抛物线解析式可得8=x2+4x+5,解得x=1或x=3,C点的坐标为(1,8)或(3,8),C(6,8),当点C落在抛物线上时,向右平移了7或9个单位,m的值为7或9;(3)y=x2+4x+5=(x2)2+9,抛物线对称轴为x=2,可设P(2,t),由(2)可知E点坐标为(1,8),当BE为平行四边形的边时,连接BE交对称轴于点M,过E作EFx轴于点F,过Q作对称轴的垂线,垂足为N,如图,则BEF=BMP=QPN,在PQN和EFB中PQNEFB(AAS),NQ=BF=OBOF=51=4,设Q(x,y),则QN=|x2|,|x2|=4,解得x=2
44、或x=6,当x=2或x=6时,代入抛物线解析式可求得y=7,Q点坐标为(2,7)或(6,7);当BE为对角线时,B(5,0),E(1,8),线段BE的中点坐标为(3,4),则线段PQ的中点坐标为(3,4),设Q(x,y),且P(2,t),x+2=32,解得x=4,把x=4代入抛物线解析式可求得y=5,Q(4,5);综上可知Q点的坐标为(2,7)或(6,7)或(4,5)6(2017贵阳)我们知道,经过原点的抛物线可以用y=ax2+bx(a0)表示,对于这样的抛物线:(1)当抛物线经过点(2,0)和(1,3)时,求抛物线的表达式;(2)当抛物线的顶点在直线y=2x上时,求b的值;(3)如图,现有一组这样的抛物线,它们的顶点A1、A2、,An在直线y=2x上,横坐标依次为1,2,3,n(n为正整数,且n12),分别过每个顶点作x轴的垂线,垂足记为B1、B2,Bn,以线段AnBn为边向左作正方形AnBnCnDn,如果这组抛物线中的某一条经过点Dn,求此时