《2022年《旋转》全章复习与巩固--知识讲解 .pdf》由会员分享,可在线阅读,更多相关《2022年《旋转》全章复习与巩固--知识讲解 .pdf(8页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、旋转全章复习与巩固- 知识讲解(基础)【学习目标】1、 通过具体实例认识旋转,探索它的基本性质,理解对应点到旋转中心的距离相等、对应点与旋转中心连线所成的角彼此相等的性质;2、通过具体实例认识中心对称,探索它的基本性质,理解对应点所连线段被对称中心平分的性质,了解平行四边形、圆是中心对称图形;3、 能够按要求作出简单平面图形旋转后的图形,欣赏旋转在现实生活中的应用;4、探索图形之间的变化关系(轴对称、平移、旋转及其组合),灵活运用轴对称、平移和旋转的组合进行图案设计【知识网络】【要点梳理】要点一、旋转1. 旋转的概念:把一个图形绕着某一点O转动一个角度的图形变换叫做旋转. 点 O 叫做旋转中心
2、,转动的角叫做旋转角( 如AO A), 如果图形上的点A经过旋转变为点A,那么,这两个点叫做这个旋转的对应点.要点诠释: 旋转的三个要素:旋转中心、旋转方向和旋转角度. 2. 旋转的性质 : (1)对应点到旋转中心的距离相等(OA= OA ) ;(2) 对应点与旋转中心所连线段的夹角等于旋转角; (3)旋转前、后的图形全等( ABC AB C).要点诠释: 图形绕某一点旋转,既可以按顺时针旋转也可以按逆时针旋转. 3. 旋转的作图 :在画旋转图形时,首先确定旋转中心,其次确定图形的关键点,再将这些关键沿指定的方向旋转指定的角度,然后连接对应的部分,形成相应的图形要点诠释:作图的步骤:(1) 连
3、接图形中的每一个关键点与旋转中心;名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 1 页,共 8 页 - - - - - - - - - (2) 把连线按要求(顺时针或逆时针)绕旋转中心旋转一定的角度(旋转角);(3) 在角的一边上截取关键点到旋转中心的距离,得到各点的对应点;(4) 连接所得到的各对应点. 要点二、特殊的旋转中心对称1. 中心对称: 把一个图形绕着某一个点旋转180,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心这两个图形
4、中的对应点叫做关于中心的对称点要点诠释:(1)有两个图形,能够完全重合,即形状大小都相同;(2)位置必须满足一个条件:将其中一个图形绕着某一个点旋转180能够与另一个图形重合 ( 全等图形不一定是中心对称的,而中心对称的两个图形一定是全等的) . 2. 中心对称图形:把一个图形绕着某一个点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心要点诠释: (1) 中心对称图形指的是一个图形;(2)线段,平行四边形,圆等等都是中心对称图形. 要点三、平移、轴对称、旋转平移、轴对称、旋转之间的对比平移轴对称旋转相同点都是全等变换(合同变换),即变换前后
5、的图形全等不同点定义把一个图形沿某一方向移动一定距离的图形变换把一个图形沿着某一条直线折叠的图形变换把一个图形绕着某一定点转动一个角度的图形变换图形要素平移方向平移距离对称轴旋转中心、 旋转方向、 旋转角度性质连接各组对应点的线段平行(或共线)且相等任意一对对应点所连线段被对称轴垂直平分对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角都等于旋转角对应线段平行(或共线)且相等任意一对对应点所连线段被对称轴垂直平分* 对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角,即:对应点与旋转中心连线所成的角彼此相等名师资料总结 - - -精品资料欢迎下载 - - - - -
6、- - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 2 页,共 8 页 - - - - - - - - - 【典型例题】类型一、旋转1. 数学课上, 老师让同学们观察如图所示的图形,问:它绕着圆心O旋转多少度后和它自身重合?甲同学说:45;乙同学说: 60;丙同学说: 90;丁同学说: 135. 以上四位同学的回答中,错误的是(). A甲B. 乙C. 丙 D. 丁【答案】 B. 【解析】 因为圆被平分为8 部分 , 所以旋转 45,90 ,135 均能与原图形重合. 【总结升华】同一图形的旋转角可以是多个. 举一反三:【变式】 以图 1 的边缘所在
7、直线为轴将该图案向右翻折180后,再按顺时针方向旋转180,所得到图形是(). 【答案】 A. 类型二、中心对称2. 如图, ABC是 ABC旋转后得到的图形,请确定旋转中心、旋转角. 【答案与解析】对应点到旋转中心的距离相等,即OA=OA O点在 AA 的垂直平分线上同理 O点也在 BB 的垂直平分线上两条垂直平分线的交点O就是旋转中心,AOA 的度数就是旋转角名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 3 页,共 8 页 - - - - - - - - - 【总结升华】 中心
8、对称的对应点到对称中心的距离相等,所以对称中心在对应点的垂直平分线上. 举一反三:【变式】下列图形中,既是中心对称图形又是轴对称图形的是(). A BC D【答案】 A. 类型三、平移、轴对称、旋转3. 如图,设P是等边三角形ABC内一点, PB=3 ,PA=4,PC=5 ,求 APB的度数 . 【思路点拨】 因为是等边三角形ABC ,所以有等线段, 又因为已知的三边的长度是3,4,5 ,是一组勾股数,所以应该想到运用旋转构造直角三角形.【答案与解析】 ABC为等边三角形,AB=AC ,BAC=60 . 将 PAB绕点 A逆时针旋转60,得到 DAC , PAB DAC PA=AD=4 ,PB
9、=CD=3 , APB= ADC 在 RtPCD中, PC=5 ,. PDC=90 PA=AD ,PAD=60 , PAD为等边三角形 PDA=60 名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 4 页,共 8 页 - - - - - - - - - ADC= PDA+ PDC=150 , APB=150 【总结升华】要将题目条件中的三条线段尽可能集中在一个三角形中,而且出现等腰(或等边)三角形就可以利用旋转思想来构造全等三角形. 举一反三:【高清课堂 : 旋转高清 ID 号 38
10、8636 关联的位置名称:经典例题1】【变式】已知 D是等边 ABC外一点, BDC=120o. 求证: AD=BD+DC. 【答案】 ABC为等边三角形,AB=AC , BAC=60 . 将 ABD绕点 A逆时针旋转60,得到 EAC , DAB EAC,即ABD= ACE, 四边形ABCD 中, BDC=120o , BAC=60 , D BA+DC A=180, 即 ACE+ DC A=180, 点 D,C,E 三点共线 . BD+DC=CE+DC=DE. 又D BE=60 . ADE是等边三角形 , 即 DE=AD. BD+DC=AD.4如图,在四边形ABCD 中, ABC 30, A
11、DC 60, AD=CD. 求证: BD2=AB2+BC2.【思路点拨】利用 AD=CD 可以将 BCD绕点 D逆时针旋转 60, 从而把条件集中到一个三角形中.【答案与解析】名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 5 页,共 8 页 - - - - - - - - - 证明: AD=CD , ADC=60 , BCD绕点 D逆时针旋转60,得到 EAD , BDE= CDA=60 , BCD EAD BC=AE , BD=DE , DAE= DCB, BDE为等边三角形BE
12、=BD 在四边形ABCD 中, ABC 30, ADC 60, DCB+ DAB=270 ,即 DAE+ DAB=270 BAE=90 在 RtBAE中,【总结升华】 由求证可知应该建立一个直角三角形,再由已知知道有30,60的角, 有等线段,可以构想通过旋转构建直角三角形.【高清课堂 : 旋转高清 ID 号: 388636 ,关联的位置名称:经典例题2-3 】5 、正方形ABCD 和正方形 AEFG有一个公共点A,点 G、E分别在线段AD 、AB上(1)如图连结DF 、BF ,试问:当正方形AEFG绕点 A旋转时, DF 、BF的长度是否始终相等?若相等请证明;若不相等请举出反例. (2)若
13、将正方形AEFG 绕点 A顺时针方向旋转,连结DG ,在旋转过程中,能否找到一条线段的长度与线段DG的长度相等,并画图加以说明. FBCE名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 6 页,共 8 页 - - - - - - - - - 【答案与解析】(1) 如图, DF、BF的长度不是始终相等,当点F 旋转到 AB边上时, DFADBF. (2)线段 BE=DG 如图 : 正方形 ABCD 和正方形 AEFG AD=AB,AG=AE, 1+2=2+3 DAG= BAE ADG
14、ABE DG=BE 【总结升华】利用旋转图形的不变性确定全等三角形. 举一反三:【变式】 . 如图,把边长为 1 的正方形 ABCD 绕顶点 A逆时针旋转30到正方形AB CD,则它们的公共部分的面积等于_【答案】 不妨设 CD与 BC交点为 P,则两个正方形关于AP所在的直线对称,因此只需算出三角形 ADP的面积即可 . 又 BAD=60 ,所以 DAP=30 ,因此三角形ADP的面积可算,所以公共部分面积为6. 如图,已知 ABC为等腰直角三角形,BAC=900,E、F是 BC边上点且 EAF=45 . 求证:【思路点拨】通过求证可以猜测要证得直角三角形,所以可以考虑旋转.【答案与解析】
15、ABC为等腰直角三角形且BAC=90 名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 7 页,共 8 页 - - - - - - - - - AB=AC ,将 CAF绕点 A顺时针旋转90,如图,得到,, , 连结,则在中,, , 又, . 又, 在与中, . , 由得:.【总结升华】旋转性质:旋转前,后的图形全等. 名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 8 页,共 8 页 - - - - - - - - -