《2022年鲁教版八年级上册数学知识点 .pdf》由会员分享,可在线阅读,更多相关《2022年鲁教版八年级上册数学知识点 .pdf(7页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、名师总结优秀知识点鲁教版八年级上册数学知识点第一章分式一、分式1分式的概念 :如果整式 A 除以整式 B, 可以表示成BA的形式 ,且除式 B 中含有字母, 那么称式子BA为分式。其中 , A 叫分式的分子 , B 叫分式的分母。注意: 判断一个代数式是否为分式,不能将它变形,不能约分后去判断,即使它约分后是整式也不能说它就是整式,约分之前是分式这个式子就是分式。如: x2 x 是分式 ,虽然约分之后等于x 是整式 ,但约分前是分式。是常数 ,所以 a/ 不是分式 而是整式。2有理式: 整式和分式统称有理式。( 整式的分母中不含有字母) 3关于分式的几点说明: (1) 分式的分母中必须含有未知
2、数;(2)分式是两个整式相除的商式,对任意一个分式,分母都不为零;(3)分数线有除号和括号的作用,如:dcba表示(ab) (cd) ;(4) “分式的值为零”包含两层意思:一是分式有意义( 分母 0),二是分子的值为零,不要误解为“只要分子的值为零,分式的值就是零”。4一般的,对分式AB都有 :分式有意义B0;分式无意义B=0;分式的值为0A=0且 B0;分式的值大于0分子分母同号;分式的值小于0分子分母异号。5基本性质 :分式的分子和分母同乘以(或除以)同一个不为0 的整式, 分式值不变。二、分式的乘除法1.分式的乘除法则: 分式乘以分式,用分子的积做积的分子,分母的积做积的分母;分式除以
3、分式:把除式的分子、分母颠倒位置后,与被除式相乘。分式的乘方是把分式的分子、分母各自乘方,再把所得的幂相除。2.约分 : 把一个分式的分子和分母的公因式(不为 1 的数)约去,这种变形称为约分。注意 : 当分式的分子分母都是单项式或者是几个因式乘积的形式时, 直接约分;分式的分子和分母都是多项式时,将分子和分母分解因式再约分。3.最简分式 :一个分式的分子和分母没有公因式时,这个分式称为最简分式。约分时,一般要将一个分式化为最简分式。三、分式的加减法1. 通分 : 利用分式的基本性质 , 把异分母的分式化为同分分母的过程。通分原则 : 异分母通分时, 通常取各分母的最简公分母作为它们的共同分母
4、。通分步骤: 先求出所有分式分母的最简公分母,再将所有分式的分母变为最简公分母,同时各分式按照分母所扩大的倍数,相应扩大各自的分子。最简公分母的确定方法:系数取各因式系数的最小公倍数、相同字母的最高次幂及单独字母的幂的乘积。精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 1 页,共 7 页名师总结优秀知识点2. 法则 : 同分母的分式相加减,分母不变,分子相加减;异分母的分式相加减, 先通分 , 化为同分母的分式, 再按同分母分式的加减法法则进行计算。四、分式方程1. 概念 : 分母中含有未知数的方程叫做分式方程。2. 分式方程的解法: 去分母(方
5、程两边同乘以最简公分母,将分式方程化为整式程若遇到互为相反数时,不要忘了改变符号);按解整式方程的步骤求出未知数的值;验根。3. 分式方程的增根: 在方程变形时,有时会产生不适合原方程的根即代入方程后分母的值为的根,叫做原方程的增根。例题:m取时,方程323xmxx会产生增根 (或说无解 )。(思路 )在这里增根就是x=3,但不能直接带入方程求m,所以要 先去分母再将x=3 带入求 m 第二章相似图形一、线段的比1.概念 : 在同一单位长度下, 两条线段的长度的比叫这两条线段的比。在a:b 或ab中,a叫比例的前项 ,b 叫比例的后项。2. 注意 : 若 a:b=k, 说明 a 是 b 的 k
6、 倍;两条线段的比与所采用的长度单位无关, 但求比时两条线段的长度单位必须一致;两条线段的比值是一个没有单位的正数;除 a=b 外,a:b b:a,a/b 与 b/a 互为倒数。二、比例线段1.概念 : 四条线段 a,b,c,d中 ,如果a 与 b 的比等于 c 与 d的比 , 即 a:b=c:d (或 a/b=c/d), 那么这四条线段a,b,c,d 叫做成比例线段,简称比例线段。 a、b、c、 d 叫比例的项 , 其中 ,a 、d 叫外项 ,b 、c 叫内项。2. 比例中项 : 当 a:b=b:c时 , 称 b为 a 与 c 的比例中项。(b2=ac) 3. 性质 : 内项之积等于外项之积
7、若 a/b=c/d 则ad=bc 合比性质若a/b=c/d 则(a+b)/b=(c+d)/d 分比性质若a/b=c/d 则(a-b)/b=(c-d)/d 等比性质若a/b=c/d= =m/n(b+d+n0),则(a+c+m) (b+d+n)=a/b合分比性质若a/b=c/d 则(a+b)/(a-b)=(c+d)/(c-d) 更比性质若a/b=c/d 则c/a=d/b( 当然也就有a/c=b/d) 反比性质若a/b=c/d 则b/a=d/c 三、形状相同的图形例如 : 两个半径不相等的圆;所有的等边三角形;所有的正方形;所有的正六边形。一个图形各点的横坐标、纵坐标都乘以或除以同一个数,则连接所得
8、到点的图形与原图形形状相同。四、相似三角形精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 2 页,共 7 页名师总结优秀知识点1.概念 : 对应角相等 , 对应边成比例的两个三角形, 叫做相似三角形( 相似符号为“”) 。平行于三角形一边的直线和其他两边(或两边的延长线)相交, 所构成的三角形与原三角形相似。相似比 :相似三角形对应边的比叫做相似比。2.全等一定相似, 相似不一定全等( 全等是相似中相似比为1 时的特殊情况) 五、探索三角形相似的条件1定义判定 :对应角相等、对应边成比例2判定 1:两个角对应相等判定 2:两边对应成比例且夹角相等判
9、定 3:三边对应成比例Rt相似的判定:( 除上述三个外 ) 斜边与一直角边对应成比例的两直角三角形相似。3. 三角形相似的判定定理推论推论一:顶角或底角相等的两个等腰三角形相似。推论二:腰和底对应成比例的两个等腰三角形相似。推论三:有一个锐角相等的两个直角三角形相似。推论四:直角三角形被斜边上的高分成的两个直角三角形和原三角形都相似。推论五:如果一个三角形的两边和其中一边上的中线与另一个三角形的对应部分成比例,那么这两个三角形相似。推论六:如果一个三角形的两边和第三边上的中线与另一个三角形的对应部分成比例,那么这两个三角形相似。4. ( 补充 ) 射影定理:在 RtABC 中, ACB=900
10、,CD 是斜边 AB 上的高 ,则AC2=AD AB BC2=BD AB CD2=AD BD 5. ( 补充 ) 三角形的重心概念 : 三角形三条 中线的交点 叫做三角形的重心;三角形的重心与顶点的距离等于它与对边中点的距离的两倍。六、相似三角形的性质1相似三角形的三个对应角相等,三边对应成比例;2相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比,A B C D E D E O B C 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 3 页,共 7 页名师总结优秀知识点3相似三角形周长的比等于相似比,相似三角形面积的比等于相似比的平
11、方。七、测量旗杆的高度 ( 略) 八、相似多边形1.概念 : 对应角相等、对应边成比例的两个多边形叫做相似多边形。2.性质 : 性质 1:相似多边形的对应角相等,对应边成比例;性质 2:相似多边形的周长之比等于相似比;面积之比等于相似比的平方。九、位似图形1.概念 : 如果两图形不仅相似,而且对应顶点的连线相交于一点,像这样的两个图形叫做位似图形 , 这个点叫做位似中心, 这时的相似比又称为位似比 。2. 性质 : 位似图形上的任意一对对应点到位似中心的距离之比等于位似比。3. 探索 : 利用位似可以把一个图形放大或缩小;对应点连线都交于位似中心,对应线段平行或在一条直线上;在平面直角坐标系中
12、,如果位似变换是以原点为位似中心,相似比为 k,那么位似图形对应点的坐标的比等于k 或-k.。第三章证明( 一) 一、定义与命题1.定义的概念 : 能清楚地规定某一名称或术语的句子叫做该名称或术语的定义。2. 命题的概念 : 一般地 ,判断 一件事情的句子,叫做命题(命题必须是对某事作出判断)。3. 命题的特征 : 每个命题都是由条件 和结论 两部分组成, 条件 是已知的事项,结论 是由已知事项推断出的事项。一般地, 命题都可以写成“如果,那么”的形式其中 ,“如果”引出的部分是条件,“那么”引出的部分是结论。4. 真假命题 : 如果条件成立,那么结论成立(正确的命题 ),像这样的命题叫做真命
13、题 ;条件成立时,不能保证结论总是正确的,也就是说结论不成立(错误的命题 ),这样的命题叫做 假命题 。二、证明的必要性三、公理与定理1.公理 : 通过长期实践总结出来,并且被人们公认的真命题叫做公理。2.定理 : 通过推理得到证实的真命题叫做定理, 可以作为判断其它命题真假的依据。本教科书选用如下命题作为公理:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。也可以简单说成:同位角相等,两直线平行。两条平行线被第三条直线所截,同位角相等。也可以简单说成:两直线平行,同位角相等。两边及其夹角对应相等的两个三角形全等。精选学习资料 - - - - - - - - - 名师归纳总结 -
14、 - - - - - -第 4 页,共 7 页名师总结优秀知识点两角及其夹边对应相等的两个三角形全等。三边对应相等的两个三角形全等。全等三角形的对应边相等,对应角相等。此外, 等式的有关性质和不等式的有关性质都可以看作公理。例如“在等式或不等式中,一个量可以用它的等量来代替”,简称为“等量代换” 。四、平行线的判定定理五、平行线的性质定理把一个命题的条件和结论交换后,就构成了一个新的命题。如果把原来的命题叫做原命题,那么这个新的命题就叫做原命题的逆命题。一个命题是真命题,它的逆命题不一定是真命题。六、三角形内角和定理三角形三个内角之和为1800 ; 直角三角形的两个锐角互余。关于辅助线:辅助线
15、是为了证明需要在原图上添画的线( 辅助线通常画成虚线) ;它的作用是把分散的条件集中,把隐含的条件显现出来,起到牵线搭桥的作用;添加辅助线,可构造新图形,形成新关系,找到联系已知与未知的桥梁,把问题转化,但辅助线的添法没有一定的规律,要根据需要而定, 平时做题时要注意总结。第四章数据的收集与处理一、普查和抽样调查1.普查 : 为了一定的目的而考察对象进行的全面调查, 称为 普查 。其中 , 所要考察的对象的全体称为 总体 , 而组成总体的每一个考察对象称为个体 。普查的优点及缺陷: 可以直接获得总体情况,但总体中个体数目很多时, 工作量大 , 无法一一考察; 有时受客观条件的限制, 无法对个体
16、一一考查;有时调查具有破坏性, 不允许对个体一一考查。2.抽样调查 : 从总体中抽取部分个体进行调查,这种调查称为抽样调查 , 其中从总体中抽取的一部分个体叫做总体的一个样本 ,样本中的个体的数目称为样本容量 。二、数据的收集议一议 : 抽样调查时应注意什么? 答: 抽样调查时要注意样本的代表性、广泛性和真实性: 即被调查的对象不得太少,被调查对象应是随意抽取的,调查数据应是真实的。抽样调查的可行性:1. 抽样调查只考查总体的一部分,因此其优点是调查范围小,节省时间、 人力、物力和财力;2. 但其调查结果往往不如普查得到的结果准确。精选学习资料 - - - - - - - - - 名师归纳总结
17、 - - - - - - -第 5 页,共 7 页名师总结优秀知识点三、数据的整理对数据进行分组整理,就是将收集到的所有数据按照一定的标准划分为若干组。通过分组整理,可比较清晰地掌握数据的整体分布情况。四、频数和频率我们称每个考查对象出现的次数为频数 , 而每个对象出现的次数与总次数的比值为频率 。公式 : 频率 =频数总次数频数=总次数频率;总次数=频数频率频数之和 =总次数;频率之和 =1 频数、频率、频数分布表、 频数分布直方图和频数分布折线图都反映了一组数据的分布情况。五、数据的波动1.极差的概念 : 刻画数据离散程度( 即相对于 “平均水平” 的偏离情况 ) 的一个统计量,是指一组数
18、据中最大数据与最小数据的差( 极差 =最大值 - 最小值 )。极差的意义 : 极差是最简单的一种度量数据波动情况的量(一般而言 ,极差小 ,各个数据的波动也就小 ,它们的平均数对这组数据一般水平的代表性也就大;极差大 ,平均数的代表性也就小),但只能反映数据的波动范围,不能衡量每个数据的变化情况,而且受极端值的影响较大(当个别极端值远离其它数据时,极差往往不能充分反映全体数据的实际离散程度)。2.方差的概念 : 各个数据与平均数的差的平方的平均数。方差越小,波动越小;方差越大,波动越大。公式 :222212)(.)()(1xxxxxxnsn标准差 :就是方差的算术平方根规律 :有两组数据,设其
19、平均数分别为、方差分别为、(1) 当第二组每个数据比第一组每个数据增加m 个单位时 ,则有=+m, =(2) 当第二组每个数据是的第一组每个数据n 倍时 , 则有=n ,= (3)当第二组每个数据是的第一组每个数据n 倍加m 时,则有=n +m,= 第五章二次根式一、二次根式1.概念 : 形如(a a0)这样的式子叫做二次根式(ab也是二次根式) 。其中 a 可以是数 ,也可是单项式和多项式。2.求二次根式中字母的取值范围的基本依据:x1x2s21s22x2x1s22s21x2x1s22x2x1s21s22s21n2n2精选学习资料 - - - - - - - - - 名师归纳总结 - - -
20、 - - - -第 6 页,共 7 页名师总结优秀知识点被开方数不小于零;分母中有字母时,要保证分母不为零。二、二次根式的性质基本性质一:2()a=a (a 0)基本性质二:aa2积的性质:ab=ab(a 0,b 0) 商的性质:ab=ab(a 0,b 0)注:一般地,二次根式化简的结果中分母中不含根号,而且根号内的数就是一个自然数,且自然数的因数中,不含有除1 以外的自然数的平方数,被开方数为带分数时,还要先化为假分数再利用性质化简。三、二次根式的加减法1.最简二次根式的两个条件:(1)被开方数不含分母( 即因数是整数,因式是整式) ;(2)被开方数中不含能开得尽方的因数或因式。2.同类二次
21、根式: 几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式就叫做同类二次根式( 与二次根式的系数无关) 。3.二次根式的加减:( 在二次根式加减或其它运算时,把根号前的乘数看作它的系数) 合并同类二次根式化为最简二次根式;系数相加减;二次根式不变。与合并同类项类似,把同类二次根式的系数相加减, 作为结果的系数, 根号及根号内部都不变四、二次根式的乘除法1.算术平方根的积等于各个被开方数积的算术平方根ab=ab(a0,b 0) 2.两个二次根式相除,等于把被开方数相除,作为商的被开方数baba(a0,b 0)注意:如果被开方数是带分数,应先化成假分数。精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 7 页,共 7 页