《2022年贵州省黔西南州中考数学试卷解析 .pdf》由会员分享,可在线阅读,更多相关《2022年贵州省黔西南州中考数学试卷解析 .pdf(22页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、贵州省黔西南州中考数学试卷一、选择题(每小题4 分,共 40 分)1 (4 分) (2015?黔西南州)下列各数是无理数的是()ABC D 1 2 (4 分) (2015?黔西南州)分式有意义,则x 的取值范围是()A x1 B x 1 C x1 D 一切实数3 (4 分) (2015?黔西南州)如图,在菱形ABCD 中, AC 与 BD 相交于点O,AC=8 ,BD=6 ,则菱形的边长AB 等于()A 10 B C 6 D 5 4 (4 分) (2015?黔西南州)已知一组数据:3,6,2, 1,0,4,则这组数据的中位数是()A 1 BC 0 D 2 5 (4 分) (2015?黔西南州)
2、已知ABC A B C 且,则 S ABC: S ABC为()A 1:2 B 2:1 C 1:4 D 4:1 6 (4 分) (2015?黔西南州)如图,点P 在O 外,PA、PB 分别与 O 相切于 A、B 两点, P=50 ,则AOB 等于()A 150 B 130 C 155 D 1357 (4 分) (2015?黔西南州)某校准备修建一个面积为180 平方米的矩形活动场地,它的长比宽多11 米,设场地的宽为x 米,则可列方程为()精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 1 页,共 22 页A x(x11)=180 B 2x+2 (x
3、 11)=180 C x(x+11)=180 D 2x+2 (x+11)=180 8 (4 分) (2015?黔西南州)下面几个几何体,主视图是圆的是()ABCD9 (4 分) (2015?黔西南州)如图,在Rt ABC 中, C=90 ,AC=4cm ,BC=6cm ,动点 P 从点 C沿 CA,以 1cm/s 的速度向点A 运动,同时动点O 从点 C 沿 CB,以 2cm/s 的速度向点B 运动,其中一个动点到达终点时,另一个动点也停止运动则运动过程中所构成的CPO 的面积 y( cm2)与运动时间x(s)之间的函数图象大致是()ABCD10 (4 分) (2015?黔西南州)在数轴上截取
4、从0 到 3 的对应线段AB ,实数 m 对应 AB 上的点 M,如图 1;将 AB 折成正三角形,使点A、B 重合于点P,如图 2;建立平面直角坐标系,平移此三角形,使它关于y 轴对称,且点P的坐标为( 0,2) ,PM 的延长线与x 轴交于点N(n,0) ,如图 3,当 m=时, n 的值为()A 42B 24 C D二、填空题(每小题3 分,共 30 分)11 (3 分) (2015?黔西南州) a2?a3=12 (3 分) (2015?黔西南州) 42500000 用科学记数法表示为精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 2 页,共
5、 22 页13 (3 分) (2015?黔西南州)如图,四边形ABCD 是平行四边形,AC 与 BD 相交于点O,添加一个条件:,可使它成为菱形14 (3 分) (2015?黔西南州)如图,AB 是O 的直径, BC 是O 的弦,若 AOC=80 ,则 B=15 (3 分) (2015?黔西南州)分解因式:4x2+8x+4=16 (3 分) (2015?黔西南州)如图,点A 是反比例函数y=图象上的一个动点,过点A 作 AB x轴, AC y 轴,垂足点分别为B、C,矩形 ABOC 的面积为4,则 k=17 (3 分) (2015?黔西南州)已知圆锥的底面圆半径为3,母线长为5,则圆锥的全面积
6、是18 (3 分) (2015?黔西南州)已知x=,则 x2+x+1=19 (3 分) (2015?黔西南州)如图,AB 是O 的直径, CD 为 O 的一条弦, CDAB 于点 E,已知 CD=4, AE=1,则 O 的半径为精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 3 页,共 22 页20 (3 分) (2015?黔西南州) 已知 A32=3 2=6, A53=5 4 3=60, A52=5 4 3 2=120, A63=6 5 4 3=360,依此规律A74=三、 (本题共12 分)21 (12 分) (2015?黔西南州)(1)计算:
7、(2014)0+|tan45 |()1+(2)解方程:=3四、 (本题共12 分)22 (12 分) (2015?黔西南州)如图,点O 在APB 的平分线上,O 与 PA 相切于点C(1)求证:直线PB 与O 相切;(2)PO 的延长线与 O 交于点 E若 O 的半径为3,PC=4求弦 CE 的长五、 (本题共14 分)23 (14 分) (2015?黔西南州)为了提高中学生身体素质,学校开设了A:篮球、 B:足球、 C:跳绳、 D:羽毛球四种体育活动,为了解学生对这四种体育活动的喜欢情况,在全校随机抽取若干名学生进行问卷调查(每个被调查的对象必须选择而且只能在四种体育活动中选择一种),将数据
8、进行整理并绘制成以下两幅统计图(未画完整)精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 4 页,共 22 页(1)这次调查中,一共调查了名学生;(2)请补全两幅统计图;(3)若有 3 名喜欢跳绳的学生,1 名喜欢足球的学生组队外出参加一次联谊活动,欲从中选出2 人担任组长(不分正副) ,求一人是喜欢跳绳、一人是喜欢足球的学生的概率六、 (本题共14 分)24 (14 分) (2015?黔西南州)某地为了鼓励居民节约用水,决定实行两级收费制,即每月用水量不超过 12 吨(含 12 吨)时,每吨按政府补贴优惠价收费;每月超过12 吨,超过部分每吨按市
9、场调节价收费,小黄家1 月份用水 24 吨,交水费42 元 2 月份用水20 吨,交水费32 元(1)求每吨水的政府补贴优惠价和市场调节价分别是多少元;(2)设每月用水量为x 吨,应交水费为y 元,写出y 与 x 之间的函数关系式;(3)小黄家3 月份用水26 吨,他家应交水费多少元?七、阅读材料题(本题共12 分)25 (12 分) (2015?黔西南州)求不等式(2x1) (x+3) 0 的解集解:根据 “ 同号两数相乘,积为正” 可得: 或 解 得 x;解 得 x 3 不等式的解集为x或 x 3请你仿照上述方法解决下列问题:(1)求不等式(2x3) (x+1) 0 的解集(2)求不等式
10、0 的解集八、 (本题共16 分)精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 5 页,共 22 页26 (16 分) (2015?黔西南州)如图,在平面直角坐标系中,平行四边形ABOC 如图放置,将此平行四边形绕点O 顺时针旋转90 得到平行四边形ABOC 抛物线 y= x2+2x+3 经过点 A、 C、A 三点(1)求 A、A 、C 三点的坐标;(2)求平行四边形ABOC 和平行四边形A B OC重叠部分 COD 的面积;(3)点 M 是第一象限内抛物线上的一动点,问点M 在何处时, AMA 的面积最大?最大面积是多少?并写出此时M 的坐标2
11、015 年贵州省黔西南州中考数学试卷参考答案与试题解析一、选择题(每小题4 分,共 40 分)1 (4 分) (2015?黔西南州)下列各数是无理数的是()ABC D 1 考点 : 无理数分析:根据无理数的三种形式求解解答:解:=2,则无理数为 故选 C点评:本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式: 开方开不尽的数, 无限不循环小数, 含有 的数2 (4 分) (2015?黔西南州)分式有意义,则x 的取值范围是()A x1 B x 1 C x1 D 一切实数考点 : 分式有意义的条件分析:分母为零,分式无意义;分母不为零,分式有意义精选学习资料 - - - - - -
12、- - - 名师归纳总结 - - - - - - -第 6 页,共 22 页解答:解:由分式有意义,得x1 0解得 x 1,故选: B点评:本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:分式无意义? 分母为零;分式有意义? 分母不为零;分式值为零? 分子为零且分母不为零3 (4 分) (2015?黔西南州)如图,在菱形ABCD 中, AC 与 BD 相交于点O,AC=8 ,BD=6 ,则菱形的边长AB 等于()A 10 B C 6 D 5 考点 : 菱形的性质分析:根据菱形的对角线互相垂直平分求出OA 、OB,再利用勾股定理列式进行计算即可得解解答:解: 四边形 ABCD 是菱
13、形, OA=AC ,OB=BD ,ACBD , AC=8 ,BD=6 , OA=4 ,OB=3 , AB=5,即菱形 ABCD 的边长是5故选: D点评:本题主要考查了菱形的对角线互相垂直平分的性质,勾股定理的应用,熟记性质是解题的关键4 (4 分) (2015?黔西南州)已知一组数据:3,6,2, 1,0,4,则这组数据的中位数是()A 1 BC 0 D 2 考点 : 中位数分析:先把数据按从小到大排列:3, 1,0,2,4, 6,然后根据中位数的定义求出中间两个数0 和 2 的平均数即可解答:解:把数据按从小到大排列:3, 1,0, 2,4,6,精选学习资料 - - - - - - - -
14、 - 名师归纳总结 - - - - - - -第 7 页,共 22 页共有 6 个数,最中间的两个数为0 和 2,它们的平均数为(0+2) 2=1,即这组数据的中位数是1故选 A点评:本题考查了中位数的定义:把一组数据按从小到大(或从大到小)排列,最中间那个数(或最中间两个数的平均数)叫这组数据的中位数5 (4 分) (2015?黔西南州)已知ABC A B C 且,则 S ABC: S ABC为()A 1:2 B 2:1 C 1:4 D 4:1 考点 : 相似三角形的性质分析:根据相似三角形的面积比等于相似比的平方求出即可解答:解: ABC ABC,=()2=,故选 C点评:本题考查了相似三
15、角形的性质的应用,能运用相似三角形的性质进行计算是解此题的关键,注意:相似三角形的面积比等于相似比的平方6 (4 分) (2015?黔西南州)如图,点P 在O 外,PA、PB 分别与 O 相切于 A、B 两点, P=50 ,则AOB 等于()A 150 B 130 C 155 D 135考点 : 切线的性质分析:由 PA与 PB 为圆的两条切线,利用切线性质得到PA 与 OA 垂直, PB 与 OB 垂直,在四边形 APBO 中,利用四边形的内角和定理即可求出AOB 的度数解答:解: PA、PB 是O 的切线, PAOA ,PBOB, PAO= PBO=90 , P=50 ,精选学习资料 -
16、- - - - - - - - 名师归纳总结 - - - - - - -第 8 页,共 22 页 AOB=130 故选 B点评:此题考查了切线的性质,以及四边形的内角和定理,熟练掌握切线的性质是解本题的关键7 (4 分) (2015?黔西南州)某校准备修建一个面积为180 平方米的矩形活动场地,它的长比宽多11 米,设场地的宽为x 米,则可列方程为()A x(x11)=180 B 2x+2 (x 11)=180 C x(x+11)=180 D 2x+2 (x+11)=180 考点 : 由实际问题抽象出一元二次方程专题 : 增长率问题分析:根据题意设出未知数,利用矩形的面积公式列出方程即可解答:
17、解:设宽为x 米,则长为(x+11)米,根据题意得: x(x+11)=180,故选 C点评:本题考查了一元二次方程的应用,解题的关键是根据矩形的面积公式列出方程8 (4 分) (2015?黔西南州)下面几个几何体,主视图是圆的是()ABCD考点 : 简单几何体的三视图分析:分别判断A,B,C,D 的主视图,即可解答解答:解: A、主视图为正方形,故错误;B、主视图为圆,正确;C、主视图为三角形,故错误;D、主视图为长方形,故错误;故选: B点评:本题考查了几何体的三视图,解决本题的关键是得出各个几何体的主视图9 (4 分) (2015?黔西南州)如图,在Rt ABC 中, C=90 ,AC=4
18、cm ,BC=6cm ,动点 P 从点 C沿 CA,以 1cm/s 的速度向点A 运动,同时动点O 从点 C 沿 CB,以 2cm/s 的速度向点B 运动,其中一个动点到达终点时,另一个动点也停止运动则运动过程中所构成的CPO 的面积 y( cm2)与运动时间x(s)之间的函数图象大致是()精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 9 页,共 22 页ABCD考点 : 动点问题的函数图象;二次函数的图象专题 : 压轴题;动点型分析:解决本题的关键是正确确定y 与 x 之间的函数解析式解答:解: 运动时间x(s) ,则 CP=x,CO=2x ;
19、 S CPO=CP?CO=x?2x=x2 则CPO 的面积 y(cm2)与运动时间x(s)之间的函数关系式是:y=x2(0 x 3) ,故选: C点评:解决本题的关键是读懂图意,确定函数关系式10 (4 分) (2015?黔西南州)在数轴上截取从0 到 3 的对应线段AB ,实数 m 对应 AB 上的点 M,如图 1;将 AB 折成正三角形,使点A、B 重合于点P,如图 2;建立平面直角坐标系,平移此三角形,使它关于y 轴对称,且点P的坐标为( 0,2) ,PM 的延长线与x 轴交于点N(n,0) ,如图 3,当 m=时, n 的值为()A 42B 24 C D考点 : 相似三角形的判定与性质
20、;实数与数轴;等边三角形的性质;平移的性质分析:先根据已知条件得出 PDE 的边长,再根据对称的性质可得出PFDE,DF=EF ,锐角三角函数的定义求出PF的长,由m=求出 MF 的长,再根据相似三角形的判定定理判断出 PFM PON,利用相似三角形的性质即可得出结论解答:解: AB=3 ,PDE 是等边三角形, PD=PE=DE=1 ,以 DE 的垂直平分线为y 轴建立直角坐标系,精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 10 页,共 22 页 PDE 关于 y 轴对称, PFDE,DF=EF ,DE x 轴, PF=, PFM PON,
21、m=, FM=,=,即=,解得: ON=4 2故选 A点评:本题考查的是相似三角形的判定与性质及等边三角形的性质,能根据题意得出FM 的长是解答此题的关键二、填空题(每小题3 分,共 30 分)11 (3 分) (2015?黔西南州) a2?a3=a5考点 : 同底数幂的乘法分析:根据同底数幂的乘法,即可解答解答:解: a2?a3=a5,故答案为: a5点评:主要考查同底数幂的乘法的性质,熟练掌握性质是解题的关键同底数幂的乘法法则,同底数幂相乘,底数不变,指数相加,即am?an=am+n12 (3 分) (2015?黔西南州) 42500000 用科学记数法表示为4.25 107考点 : 科学
22、记数法 表示较大的数分析:科学记数法的表示形式为a 10n的形式,其中1 |a|10,n 为整数确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同当原数绝对值1 时,n 是正数;当原数的绝对值1 时, n 是负数解答:解: 42500000=4.25 107故答案为: 4.25 107点评:此题考查科学记数法的表示方法科学记数法的表示形式为a 10n的形式,其中1 |a| 10,n 为整数,表示时关键要正确确定a 的值以及n 的值13 (3 分) (2015?黔西南州)如图,四边形ABCD 是平行四边形,AC 与 BD 相交于点O,添加一个条件:AB=
23、BC 或 AC BD 等,可使它成为菱形精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 11 页,共 22 页考点 : 菱形的判定专题 : 开放型分析:菱形的判定方法有三种: 定义:一组邻边相等的平行四边形是菱形; 四边相等; 对角线互相垂直平分的四边形是菱形,进而得出答案解答:解: 四边形 ABCD 是平行四边形, 当 AB=BC 时,平行四边形ABCD 是菱形,当 ACBD 时,平行四边形ABCD 是菱形故答案为: AB=BC 或 AC BD 等点评:本题考查了菱形的判定,正确把握菱形的判定方法是解题关键14(3 分) (2015?黔西南州)如
24、图,AB 是O 的直径,BC 是O 的弦,若AOC=80 , 则B=40 考点 : 圆周角定理专题 : 计算题分析:直接根据圆周角定理求解解答:解: AOC=80 , B= AOC=40 故答案为40 点评:本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半15 (3 分) (2015?黔西南州)分解因式:4x2+8x+4=4(x+1)2考点 : 提公因式法与公式法的综合运用专题 : 计算题分析:原式提取4,再利用完全平方公式分解即可精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 12 页,共 22 页
25、解答:解:原式 =4(x2+2x+1 )=4(x+1)2故答案为: 4( x+1)2点评:此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键16 (3 分) (2015?黔西南州)如图,点A 是反比例函数y=图象上的一个动点,过点A 作 AB x轴, AC y 轴,垂足点分别为B、C,矩形 ABOC 的面积为4,则 k=4考点 : 反比例函数系数k 的几何意义分析:由于点 A 是反比例函数y=上一点,矩形ABOC 的面积 S=|k|=4,则 k 的值即可求出解答:解:由题意得:S矩形ABOC=|k|=4,又双曲线位于第二、四象限,则k=4,故答案为: 4点评: 本题主
26、要考查了反比例函数y=中 k 的几何意义, 即过双曲线上任意一点引x 轴、y 轴垂线,所得矩形面积为|k|,是经常考查的一个知识点17 (3 分) ( 2015?黔西南州) 已知圆锥的底面圆半径为3,母线长为5,则圆锥的全面积是24考点 : 圆锥的计算分析:首先求得底面周长,即侧面展开图的扇形弧长,然后根据扇形的面积公式即可求得侧面积,即圆锥的侧面积,再求得圆锥的底面积,侧面积与底面积的和就是全面积解答:解:底面周长是:2 3 =6 ,则侧面积是: 65=15 ,底面积是: 32=9 ,则全面积是: 15 +9 =24 故答案为: 24 点评:本题考查了圆锥的计算,正确理解圆锥的侧面展开图与原
27、来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长18 (3 分) (2015?黔西南州)已知x=,则 x2+x+1=2精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 13 页,共 22 页考点 : 二次根式的化简求值分析:先根据完全平方公式变形,再代入求出即可解答:解: x=, x2+x+1 =(x+)2+1 =(+)2+=+=2故答案为: 2点评:本题考查了完全平方公式和二次根式的化简求值的应用,能正确代入是解此题的关键,难度适中19 (3 分) (2015?黔西南州)如图,AB 是O 的直径, CD
28、 为 O 的一条弦, CDAB 于点 E,已知 CD=4, AE=1,则 O 的半径为考点 : 垂径定理;勾股定理分析:连接 OC,由垂径定理得出CE=CD=2,设 OC=OA=x ,则 OE=x 1,由勾股定理得出CE2+OE2=OC2,得出方程,解方程即可解答:解:连接OC,如图所示: AB 是O 的直径, CD AB, CE=CD=2 ,OEC=90 ,设 OC=OA=x ,则 OE=x 1,根据勾股定理得:CE2+OE2=OC2,即 22+(x1)2=x2,解得: x=;故答案为:精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 14 页,共
29、 22 页点评:本题考查了垂径定理、勾股定理、解方程;熟练掌握垂径定理,并能进行推理计算是解决问题的关键20 (3 分) (2015?黔西南州) 已知 A32=3 2=6, A53=5 4 3=60, A52=5 4 3 2=120, A63=6 5 4 3=360,依此规律A74=840考点 : 规律型:数字的变化类分析:对于 Aab(ba)来讲, 等于一个乘法算式,其中最大因数是a,依次少 1,最小因数是b依此计算即可解答:解:根据规律可得:A74=7 6 5 4=840;故答案为: 840点评:本题考查了规律型数字的变化,这类题型在中考中经常出现对于找规律的题目首先应找出哪些部分发生了变
30、化,是按照什么规律变化的注意找到Aab(ba)中的最大因数,最小因数三、 (本题共12 分)21 (12 分) (2015?黔西南州)(1)计算:(2014)0+|tan45 |()1+(2)解方程:=3考点 : 实数的运算;零指数幂;负整数指数幂;解分式方程;特殊角的三角函数值分析:(1)利用负整数指数幂的性质以及零指数幂的性质和特殊角的三角函数值分别化简求出即可;(2)直接利用去分母进而化简解方程,再进行检验求出即可解答:解: (1)原式 =1+12+2,=;(2)=3 去分母得: 2x1=3(x1) ,则 x=2,解得: x=2,检验:把x=2 代入( x1) 0, x=2 是原分式方程
31、的解点评:此题主要考查了负整数指数幂的性质以及零指数幂的性质和特殊角的三角函数值、解分式方程等知识,正确化简各数是解题关键精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 15 页,共 22 页四、 (本题共12 分)22 (12 分) (2015?黔西南州)如图,点O 在APB 的平分线上,O 与 PA 相切于点C(1)求证:直线PB 与O 相切;(2)PO 的延长线与 O 交于点 E若 O 的半径为3,PC=4求弦 CE 的长考点 : 切线的判定专题 : 几何综合题分析:(1)连接 OC,作 ODPB 于 D 点证明OD=OC 即可根据角的平分线
32、性质易证;(2)设 PO 交O 于 F,连接 CF根据勾股定理得PO=5,则 PE=8证明 PCF PEC,得 CF:CE=PC:PE=1: 2根据勾股定理求解CE解答:(1)证明:连接OC,作 ODPB 于 D 点O 与 PA 相切于点C, OCPA 点 O 在APB 的平分线上,OCPA,ODPB, OD=OC 直线 PB 与O 相切;(2)解:设PO 交O 于 F,连接 CF OC=3,PC=4,PO=5,PE=8O 与 PA 相切于点C, PCF= E又 CPF= EPC,精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 16 页,共 22
33、页 PCF PEC, CF: CE=PC:PE=4:8=1:2 EF 是直径, ECF=90 设 CF=x,则 EC=2x则 x2+(2x)2=62,解得 x=则 EC=2x=点评:此题考查了切线的判定、相似三角形的性质注意:当不知道直线与圆是否有公共点而要证明直线是圆的切线时,可通过证明圆心到直线的距离等于圆的半径,来解决问题五、 (本题共14 分)23 (14 分) (2015?黔西南州)为了提高中学生身体素质,学校开设了A:篮球、 B:足球、 C:跳绳、 D:羽毛球四种体育活动,为了解学生对这四种体育活动的喜欢情况,在全校随机抽取若干名学生进行问卷调查(每个被调查的对象必须选择而且只能在
34、四种体育活动中选择一种),将数据进行整理并绘制成以下两幅统计图(未画完整)(1)这次调查中,一共调查了200名学生;(2)请补全两幅统计图;(3)若有 3 名喜欢跳绳的学生,1 名喜欢足球的学生组队外出参加一次联谊活动,欲从中选出2 人担任组长(不分正副) ,求一人是喜欢跳绳、一人是喜欢足球的学生的概率精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 17 页,共 22 页考点 : 列表法与树状图法;扇形统计图;条形统计图分析:(1)由题意得:这次调查中,一共调查的学生数为:40 20%=200(名);(2)根据题意可求得B 占的百分比为: 120%
35、30%15%=35%,C 的人数为: 200 30%=60(名);则可补全统计图;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与一人是喜欢跳绳、一人是喜欢足球的学生的情况,再利用概率公式即可求得答案解答:解: (1)根据题意得:这次调查中,一共调查的学生数为:40 20%=200(名) ;故答案为: 200;(2)B 占的百分比为:120%30%15%=35%,C 的人数为: 200 30%=60(名) ;如图:(3)分别用A,B,C 表示 3 名喜欢跳绳的学生,D 表示 1 名喜欢足球的学生;画树状图得: 共有 12 种等可能的结果,一人是喜欢跳绳、一人是喜欢足球的学生的有
36、6 种情况, 一人是喜欢跳绳、一人是喜欢足球的学生的概率为:=点评:此题考查了列表法或树状图法求概率以及条形统计图与扇形统计图用到的知识点为:概率=所求情况数与总情况数之比六、 (本题共14 分)24 (14 分) (2015?黔西南州)某地为了鼓励居民节约用水,决定实行两级收费制,即每月用水量不超过 12 吨(含 12 吨)时,每吨按政府补贴优惠价收费;每月超过12 吨,超过部分每吨按市场调节价收费,小黄家1 月份用水 24 吨,交水费42 元 2 月份用水20 吨,交水费32 元(1)求每吨水的政府补贴优惠价和市场调节价分别是多少元;(2)设每月用水量为x 吨,应交水费为y 元,写出y 与
37、 x 之间的函数关系式;(3)小黄家3 月份用水26 吨,他家应交水费多少元?精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 18 页,共 22 页考点 : 一次函数的应用分析:(1)设每吨水的政府补贴优惠价为a 元,市场调节价为b 元,根据题意列出方程组,求解此方程组即可;(2)根据用水量分别求出在两个不同的范围内y 与 x 之间的函数关系,注意自变量的取值范围;(3)根据小英家的用水量判断其再哪个范围内,代入相应的函数关系式求值即可解答:解: (1)设每吨水的政府补贴优惠价为a 元,市场调节价为b 元根据题意得,解得:答:每吨水的政府补贴优惠价
38、为1 元,市场调节价为2.5 元(2) 当 0 x 12 时, y=x;当 x12 时, y=12+ (x12) 2.5=2.5x18, 所求函数关系式为:y=(3)x=2612, 把 x=26 代入 y=2.5x18,得: y=2.5 2618=47(元) 答:小英家三月份应交水费47 元点评:本题考查了一次函数的应用,题目还考查了二元一次方程组的解法,特别是在求一次函数的解析式时,此函数是一个分段函数,同时应注意自变量的取值范围七、阅读材料题(本题共12 分)25 (12 分) (2015?黔西南州)求不等式(2x1) (x+3) 0 的解集解:根据 “ 同号两数相乘,积为正” 可得: 或
39、 解 得 x;解 得 x 3 不等式的解集为x或 x 3请你仿照上述方法解决下列问题:(1)求不等式(2x3) (x+1) 0 的解集(2)求不等式 0 的解集考点 : 解一元一次不等式组专题 : 阅读型精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 19 页,共 22 页分析:(1) 、 (2)根据题意得出关于x 的不等式组,求出x 的取值范围即可解答:解: (1)根据 “ 异号两数相乘,积为负” 可得 或,解 得不等式组无解;解 得, 1x;(2)根据 “ 同号两数相乘,积为正” 可得 ,解 得, x 3,解 得, x 2,故不等式组的解集为:
40、x 3 或 x 2点评:本题考查的是解一元一次不等式组,熟知“ 同大取大;同小取小;大小小大中间找;大大小小找不到 ” 的原则是解答此题的关键八、 (本题共16 分)26 (16 分) (2015?黔西南州)如图,在平面直角坐标系中,平行四边形ABOC 如图放置,将此平行四边形绕点O 顺时针旋转90 得到平行四边形ABOC 抛物线 y= x2+2x+3 经过点 A、 C、A 三点(1)求 A、A 、C 三点的坐标;(2)求平行四边形ABOC 和平行四边形A B OC重叠部分 COD 的面积;(3)点 M 是第一象限内抛物线上的一动点,问点M 在何处时, AMA 的面积最大?最大面积是多少?并写
41、出此时M 的坐标考点 : 二次函数综合题分析:(1)利用抛物线与x 轴的交点问题可求出C( 1, 0) ,A(3,0) ;计算自变量为0 时的函数值可得到A(0,3) ;(2)先由平行四边形的性质得AB OC,AB=OC ,易得 B( 1,3) ,根据勾股定理和三角形面积公式得到 OB=, S AOB=,再根据旋转的性质得 ACO= OCD,OC=OC=1,接着证明 COD BOA ,利用相似三角形的性质得=()2,则可计算出S C OD;精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 20 页,共 22 页(3)根据二次函数图象上点的坐标特征,设
42、M 点的坐标为(m, m2+2m+3) , 0m3,作 MN y 轴交直线AA 于 N,求出直线AA 的解析式为y=x+3,则 N(m, m+3) ,于是可计算出MN=m2+3m,再利用SAMA =SANM+SMNA 和三角形面积公式得到SAMA =m2+m,然后根据二次函数的最值问题求出AMA 的面积最大值,同时刻确定此时M 点的坐标解答:解: (1)当 y=0 时, x2+2x+3=0 ,解得 x1=3,x2=1,则 C( 1,0) ,A(3,0) ;当 x=0 时, y=3,则 A(0,3) ;(2) 四边形 ABOC 为平行四边形, AB OC,AB=OC ,而 C( 1,0) ,A(
43、0,3) , B(1, 3) OB=,S AOB= 3 1= ,又 平行四边形ABOC 旋转 90 得平行四边形AB OC, ACO= OC D, OC=OC=1 ,又 ACO= ABO , ABO= OC D又 C OD= AOB , COD BOA ,=()2=()2=, S C OD= =;(3)设 M 点的坐标为( m, m2+2m+3 ) ,0m3,作 MN y 轴交直线AA 于 N,易得直线AA 的解析式为y= x+3,则 N(m, m+3) , MN= m2+2m+3( m+3)=m2+3m, S AMA =S ANM+S MNA=MN?3 =( m2+3m)精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 21 页,共 22 页=m2+m =(m)2+, 当 m=时, S AMA的值最大,最大值为,此时 M 点坐标为() 点评:本题考查了二次函数的综合题:熟练掌握二次函数的性质、抛物线与x 轴的交点和二次函数的最值问题; 会运用旋转的性质和平行四边形的性质;会利用相似三角形的性质计算三角形的面积精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 22 页,共 22 页