《2015年普通高等学校招生全国统一考试(新课标Ⅱ理).doc》由会员分享,可在线阅读,更多相关《2015年普通高等学校招生全国统一考试(新课标Ⅱ理).doc(14页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2015年普通高等学校招生全国统一考试(全国卷)(理科)本试卷分第卷(选择题)和第卷(非选择题)两部分,共150分,考试时间120分钟第卷一、选择题(本大题共12小题,每小题5分,共60分在每小题给出的四个选项中,只有一项是符合题目要求的)1已知集合A2,1,0,1,2,Bx|(x1)(x2)0时,xf(x)f(x)0成立的x的取值范围是()A(,1)(0,1) B(1,0)(1,)C(,1)(1,0) D(0,1)(1,)第卷二、填空题(本大题共4小题,每小题5分,共20分把答案填在题中横线上)13设向量a,b不平行,向量ab与a2b平行,则实数_14若x,y满足约束条件则zxy的最大值为_
2、15(ax)(1x)4的展开式中x的奇数次幂项的系数之和为32,则a_16设Sn是数列an的前n项和,且a11,an1SnSn1,则Sn_三、解答题(解答应写出文字说明,证明过程或演算步骤)17(本小题满分12分)ABC中,D是BC上的点,AD平分BAC,ABD面积是ADC面积的2倍(1)求;(2)若AD1,DC,求BD和AC的长18(本小题满分12分)某公司为了解用户对其产品的满意度,从A,B两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下:A地区:62738192958574645376 78869566977888827689B地区: 7383625191465373648
3、2 93486581745654766579(1)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可);(2)根据用户满意度评分,将用户的满意度从低到高分为三个等级:满意度评分低于70分70分到89分不低于90分满意度等级不满意满意非常满意记事件C:“A地区用户的满意度等级高于B地区用户的满意度等级”假设两地区用户的评价结果相互独立根据所给数据,以事件发生的频率作为相应事件发生的概率,求C的概率19. (本小题满分12分)如图,长方体ABCDA1B1C1D1中,AB16,BC10,AA18,点E,F分别在A1B1,
4、D1C1上,A1ED1F4.过点E,F的平面与此长方体的面相交,交线围成一个正方形(1)在图中画出这个正方形(不必说明画法和理由);(2)求直线AF与平面所成角的正弦值20(本小题满分12分)已知椭圆C:9x2y2m2(m0),直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M.(1)证明:直线OM的斜率与l的斜率的乘积为定值;(2)若l过点,延长线段OM与C交于点P,四边形OAPB能否为平行四边形?若能,求此时l的斜率;若不能,说明理由21(本小题满分12分)设函数f(x)emxx2mx.(1)证明:f(x)在(,0)单调递减,在(0,)单调递增;(2)若对于任意x
5、1,x21,1,都有|f(x1)f(x2)|e1,求m的取值范围请考生在第22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号22(本小题满分10分)选修41:几何证明选讲如图,O为等腰三角形ABC内一点,O与ABC的底边BC交于M,N两点,与底边上的高AD交于点G,且与AB,AC分别相切于E,F两点(1)证明:EFBC; (2)若AG等于O的半径,且AEMN2,求四边形EBCF的面积23(本小题满分10分)选修44:坐标系与参数方程在直角坐标系xOy中,曲线C1:(t为参数,t0),其中0.在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C2:2sin ,C3:
6、2cos .(1)求C2与C3交点的直角坐标;(2)若C1与C2相交于点A,C1与C3相交于点B,求|AB|的最大值24(本小题满分10分)选修45:不等式选讲设a,b,c,d均为正数,且abcd,证明:(1)若abcd,则;(2)是|ab|cd|的充要条件参考答案第卷一、选择题(本大题共12小题,每小题5分,共60分在每小题给出的四个选项中,只有一项是符合题目要求的)1解析:选A由题意知Bx|2x1,所以AB1,0故选A.2解析:选B(2ai)(a2i)4i,4a(a24)i4i.解得a0.故选B.3解析:选D对于A选项,由图知从2007年到2008年二氧化硫排放量下降得最多,故A正确对于B
7、选项,由图知,由2006年到2007年矩形高度明显下降,因此B正确对于C选项,由图知从2006年以后除2011年稍有上升外,其余年份都是逐年下降的,所以C正确由图知2006年以来我国二氧化硫年排放量与年份负相关,故选D.4解析:选Ba13,a1a3a521,33q23q421.1q2q47,解得q22或q23(舍去)a3a5a7q2(a1a3a5)22142.故选B.5解析:选C21,f(log212)2log21216.f(2)f(log212)369.故选C.6解析:选D由已知三视图知该几何体是由一个正方体截去了一个“大角”后剩余的部分,如图所示,截去部分是一个三棱锥设正方体的棱长为1,则
8、三棱锥的体积为V1111,剩余部分的体积V213.所以,故选D.7解析:选C设圆的方程为x2y2DxEyF0,则解得圆的方程为x2y22x4y200.令x0,得y22或y22,M(0,22),N(0,22)或M(0,22),N(0,22),|MN|4,故选C.8解析:选Ba14,b18.第一次循环:1418且144,a14410;第三次循环:104且104,a1046;第四次循环:64且64,a642;第五次循环:24且24,b422;第六次循环:ab2,跳出循环,输出a2,故选B.9解析:选C如图,设球的半径为R,AOB90,SAOBR2.VOABCVC AOB,而AOB面积为定值,当点C到
9、平面AOB的距离最大时,VOABC最大,当C为与球的大圆面AOB垂直的直径的端点时,体积VOABC最大,为R2R36,R6,球O的表面积为4R2462144.故选C.10解析:选B当x时,f(x)tan x,图象不会是直线段,从而排除A、C.当x时,ff1,f2.21,f0,b0),则|BM|AB|2a,MBx18012060,M点的坐标为.M点在双曲线上,1,ab,ca,e.故选D.12解析:选A设yg(x)(x0),则g(x),当x0时,xf(x)f(x)0,g(x)0时,由f(x)0,得g(x)0,由图知0x1,当x0,得g(x)0,由图知x0成立的x的取值范围是(,1)(0,1),故选
10、A.第卷二、填空题(本大题共4小题,每小题5分,共20分把答案填在题中横线上)13解析:ab与a2b平行,abt(a2b),即abta2tb,解得答案:14解析:画出可行域如图所示由得A.由zxy,得yxz,平移直线l0:xy0,当直线过点A时,z最大,zmax1.答案:15解析:设(ax)(1x)4a0a1xa2x2a3x3a4x4a5x5.令x1,得(a1)24a0a1a2a3a4a5.令x1,得0a0a1a2a3a4a5.,得16(a1)2(a1a3a5)232,a3.答案:316解析:an1Sn1Sn,an1SnSn1,Sn1SnSnSn1.Sn0,1,即1.又1,是首项为1,公差为1
11、的等差数列1(n1)(1)n,Sn.答案:三、解答题(解答应写出文字说明,证明过程或演算步骤)17解:(1)SABDABADsinBAD,SADCACADsinCAD.因为SABD2SADC,BADCAD,所以AB2AC.由正弦定理,得.(2)因为SABDSADCBDDC,所以BD.在ABD和ADC中,由余弦定理,知AB2AD2BD22ADBDcosADB,AC2AD2DC22ADDCcosADC.故AB22AC23AD2BD22DC26.由(1),知AB2AC,所以AC1.18解:(1)两地区用户满意度评分的茎叶图如下:通过茎叶图可以看出,A地区用户满意度评分的平均值高于B地区用户满意度评分
12、的平均值;A地区用户满意度评分比较集中,B地区用户满意度评分比较分散(2)记CA1表示事件:“A地区用户的满意度等级为满意或非常满意”;CA2表示事件:“A地区用户的满意度等级为非常满意”;CB1表示事件:“B地区用户的满意度等级为不满意”;CB2表示事件:“B地区用户的满意度等级为满意”,则CA1与CB1独立,CA2与CB2独立,CB1与CB2互斥,CCB1CA1CB2CA2.P(C)P(CB1CA1CB2CA2)P(CB1CA1)P(CB2CA2)P(CB1)P(CA1)P(CB2)P(CA2)由所给数据得CA1,CA2,CB1,CB2发生的频率分别为,故P(CA1),P(CA2),P(C
13、B1),P(CB2),P(C)0.48.19.解:(1)交线围成的正方形EHGF如图所示(2)作EMAB,垂足为M,则AMA1E4,EMAA18.因为四边形EHGF为正方形,所以EHEFBC10.于是MH6,所以AH10.所以AF与平面EHGF所成角的正弦值为.20解:(1)证明:设直线l:ykxb(k0,b0),A(x1,y1),B(x2,y2),M(xM,yM)将ykxb代入9x2y2m2,得(k29)x22kbxb2m20,故xM,yMkxMb.于是直线OM的斜率kOM,即kOMk9.所以直线OM的斜率与l的斜率的乘积为定值(2)四边形OAPB能为平行四边形因为直线l过点,所以l不过原点
14、且与C有两个交点的充要条件是k0,k3.由(1)得OM的方程为yx.设点P的横坐标为xP.由得x,即xP.将点的坐标代入直线l的方程得b,因此xM.四边形OAPB为平行四边形,当且仅当线段AB与线段OP互相平分,即xP2xM.于是2,解得k14,k24.因为ki0,ki3,i1,2,所以当直线l的斜率为4或4时,四边形OAPB为平行四边形21解:(1)证明:f(x)m(emx1)2x.若m0,则当x(,0)时,emx10,f(x)0.若m0,f(x)0;当x(0,)时,emx10.所以,f(x)在(,0)上单调递减,在(0,)上单调递增(2)由(1)知,对任意的m,f(x)在1,0上单调递减,
15、在0,1上单调递增,故f(x)在x0处取得最小值所以对于任意x1,x21,1,|f(x1)f(x2)|e1的充要条件是即设函数g(t)ette1,则g(t)et1.当t0时,g(t)0时,g(t)0.故g(t)在(,0)上单调递减,在(0,)上单调递增又g(1)0,g(1)e12e1时,由g(t)的单调性,g(m)0,即emme1;当m0,即emme1.综上,m的取值范围是1,122解:(1)证明:由于ABC是等腰三角形,ADBC,所以AD是CAB的平分线又因为O分别与AB,AC相切于点E,F,所以AEAF,故ADEF,从而EFBC.(2)由(1)知,AEAF,ADEF,故AD是EF的垂直平分
16、线又EF为O的弦,所以O在AD上连接OE,OM,则OEAE.由AG等于O的半径得AO2OE,所以OAE30.因此ABC和AEF都是等边三角形因为AE2,所以AO4,OE2.因为OMOE2,DMMN,所以OD1.于是AD5,AB.所以四边形EBCF的面积为(2)2.23解:(1)曲线C2的直角坐标方程为x2y22y0,曲线C3的直角坐标方程为x2y22x0.联立解得或所以C2与C3交点的直角坐标为(0,0)和.(2)曲线C1的极坐标方程为(R,0),其中0.因此A的极坐标为(2sin ,),B的极坐标为(2cos ,)所以|AB|2sin 2cos |4.当时,|AB|取得最大值,最大值为4.24证明:(1)因为()2ab2,()2cd2,由题设abcd,abcd,得()2()2.因此.(2)必要性:若|ab|cd|,则(ab)2(cd)2,即(ab)24abcd.由(1),得.充分性:若,则()2()2,即ab2cd2.因为abcd,所以abcd.于是(ab)2(ab)24ab(cd)24cd(cd)2.因此|ab|是|ab|cd|的充要条件