新课标人教版七年级数学上全册教案.doc

上传人:豆**** 文档编号:26100090 上传时间:2022-07-15 格式:DOC 页数:95 大小:1.12MB
返回 下载 相关 举报
新课标人教版七年级数学上全册教案.doc_第1页
第1页 / 共95页
新课标人教版七年级数学上全册教案.doc_第2页
第2页 / 共95页
点击查看更多>>
资源描述

《新课标人教版七年级数学上全册教案.doc》由会员分享,可在线阅读,更多相关《新课标人教版七年级数学上全册教案.doc(95页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、Four short words sum up what has lifted most successful individuals above the crowd: a little bit more.-author-date新课标人教版七年级数学上全册教案1,掌握数轴的概念,理解数轴上的点和有理数的对应关系; 第一 课时1.1 正数和负数(1)【教学目标】1、整理前两个学段学过的整数、分数(包括小数)的知识,掌握正数和负数的概念;2、能区分两种不同意义的量,会用符号表示正数和负数;3、体验数学发展的一个重要原因是生活实际的需要,激发学生学习数学的兴趣。【教学难点】正确区分两种不同意义的量

2、。【知识重点】两种相反意义的量【探索1】上课开始时,教师应通过具体的例子,简要说明在以前我们已经学过的数,并由此请学生思考:生活中仅有这些“以前学过的数”够用了吗?请同学们看书(观察本节前面的几幅图中用到了什么数,让学生感受引入负数的必要性)并思考讨论,然后进行交流。(也可以出示气象预报中的气温图,地图中表示地形高低地形图,工资卡中存取钱的记录页面等)学生交流后,教师归纳:以前学过的数已经不够用了,有时候需要一种前面带有“”的新数。【探索2】前面带有“一”号的新数我们应怎样命名它呢?为什么要引人负数呢?通常在日常生活中我们用正数和负数分别表示怎样的量呢?这些问题都必须要求学生理解,教师可以用多

3、媒体出示这些问题,让学生带着这些问题看书自学,然后师生交流。然后总结:大于0的数叫做正数,而在正数前面加上负号“-”的数叫做负数。这阶段主要是让学生学会正数和负数的表示。强调:用正,负数表示实际问题中具有相反意义的量,而相反意义的量包含两个要素:一是它们的意义相反,如向东与向西,收人与支出;二是它们都是数量,而且是同类的量。【探索3】经过上面的讨论交流,学生对为什么要引人负数,对怎样用正数和负数表示两种相反意义的量有了初步的理解,教师可以要求学生举出实际生活中类似的例子,以加深对正数和负数概念的理解,并开拓思维提出问题:请同学们举出用正数和负数表示的例子。你是怎样理解“正整数”“负整数,正分数

4、”和“负分数”的呢?请举例说明。【练习】P3练习1,2,3,4【小结】围绕下面两点,以师生共同交流的方式进行:1、0由于实际问题中存在着相反意义的量,所以要引人负数,这样数的范围就扩大了;2、正数就是以前学过的0以外的数(或在其前面加“”),负数就是在以前学过的0以外的数前面加“”。3、0既不是正数也不是负数第二课时1.1 正数和负数(2)【教学目标】1、 通过对数“零”的意义的探讨,进一步理解正数和负数的概念;2、利用正负数正确表示相反意义的量(规定了指定方向变化的量)3、 进一步体验正负数在生产生活实际中的广泛应用,提高解决实际问题的能力,激发学习数学的兴趣。【教学难点】 深化对正负数概念

5、的理解【知识重点】 正确理解和表示向指定方向变化的量【知识回顾与深化】回顾:上一节课我们知道了在实际生产和生活中存在着两种不同意义的量,为了区分这两种量,我们用正数表示其中一种意义的量,那么另一种意义的量就用负数来表示这就是说:数的范围扩大了(数有正数和负数之分)那么,有没有一种既不是正数又不是负数的数呢?【探索1】有没有一种既不是正数又不是负数的数呢?学生思考并讨论(数0既不是正数又不是负数,是正数和负数的分界,是基准。这个道理学生并不容易理解,可视学生的讨论情况作些启发和引导)例如:在温度的表示中,零上温度和零下温度是两种不同意义的量,通常规定零上温度用正数来表示,零下温度用负数来表示。那

6、么某一天某地的最高温度是零上7,最低温度是零下5时,就应该表示为7和5,这里7和5就分别称为正数和负数.那么当温度是零度时,我们应该怎样表示呢?(表示为0),它是正数还是负数呢?由于零度既不是零上温度也不是零下温度,所以,0既不是正数也不是负数。【探索2】 引入负数后,数按照“两种相反意义的量”来分,可以分成几类?例题:(1)一个月内,小明体重增加2kg,小华体重减少1kg,小强体重无变化,写出他们这个月的体重增长值。 (2)2001年下列国家的商品进出口总额比上年的变化情况是:美国减少6.4%,德国增长1.3%,法国减少2.4%,英国减少3.5%,意大利增长0.2%,中国增长7.5%。写出这

7、些国家2001年商品进出口总额的增长率。 说明:这是一个用正负数描述向指定方向变化情况的例子, 通常向指定方向变化用正数表示;向指定方向的相反方向变化用负数表示。这种描述在实际生活中有广泛的应用,应予以重视。教学中,应让学生体验“增长”和“减少”是两种相反意义的量,要求写出“体重的增长值”和“进出口额的增长率”,就暗示着用正数来表示增长的量。 归纳:在同一个问题中,分别用正数和负数表示的量具有相反的意义。 类似的例子很多,如: 水位上升3m,实际表示什么意思呢?收人增加10%,实际表示什么意思呢?等等。可视教学中的实际情况进行补充【练习】P4练习【小结】以问题的形式,要求学生思考交流:1、 引

8、人负数后,你是怎样认识数0的,数0的意义有哪些变化?2、怎样用正负数表示具有相反意义的量?第三课时1.2.1 有理数【教学目标】1、 掌握有理数的概念,会对有理数按照一定的标准进行分类,培养分类能力;2、了解分类的标准与分类结果的相关性,初步了解“集合”的含义;3、体验分类是数学上的常用处理问题的方法。【教学难点】 正确理解正负数分类的标准和按照一定的标准进行分类。 正确理解有理数的概念。【探索1】在以前的学习中,我们已经学习了很多不同类型的数,通过上两节课的学习,又知道了现在的数包括了负数,现在请同学们在草稿纸上任意写出3个数(同时请3个同学在黑板上写出) 观察黑板上的9个数,并给它们进行分

9、类。学生思考讨论和交流分类的情况学生可能只给出很粗略的分类,如只分为“正数”和“负数”或“零”三类,此时,教师应给予引导和鼓励例如,对于数5,可这样问:5和5. 1有相同的类型吗?5可以表示5个人,而5. 1可以表示人数吗?(不可以)所以它们是不同类型的数,数5是正数中整个的数,我们就称它为“正整数”,而5. 1不是整个的数,称为“正分数,(由于小数可化为分数,以后把小数和分数都称为分数)通过教师的引导、鼓励和不断完善,以及学生自己的概括,最后归纳出我们已经学过的5类不同的数,它们分别是“正整数,零,负整数,正分数,负分数”,然后得出“整数”“分数”和“有理数”的概念。【探索2】试一试:按照以

10、上的分类,你能画出一张有理数的分类表吗?你能说出以上有理数的分类是以什么为标准的吗?(是按照整数和分数来划分的)1、任意写出三个有理数,并说出是什么类型的数,与同伴进行交流正有理数零负有理数正整数正分数负整数负分数有理数【小结】到现在为止我们学过的数都是有理数(圆周率除外),有理数可以按不同的标准进行分类,标准不同,分类的结果也不同。第四课时1.2.2 数轴【教学目标】1、掌握数轴的概念,理解数轴上的点和有理数的对应关系;2、会正确地画出数轴,会用数轴上的点表示给定的有理数,会根据数轴上的点读出所表示的有理数;3、感受在特定的条件下数与形是可以相互转化的,体验生活中的数学。【教学难点】&【知识

11、重点】数轴的概念和用数轴上的点表示有理数【探索1】教师通过实例演示得到温度计读数问题1:温度计是我们日常生活中用来测量温度的重要工具,你会读温度计吗?请你尝试读出图中三个温度计所表示的温度?问题2:在一条东西向的马路上,有一个汽车站,汽车站东3 m和7.5m处分别有一棵柳树和一棵杨树,汽车站西3 m和4.8m处分别有一棵槐树和一根电线杆,试画图表示这一情境(小组讨论,交流合作,动手操作)教师:由上述两问题我们得到什么启发?你能用一条直线上的点表示有理数吗?让学生在讨论的基础上动手操作,在操作的基础上归纳出:可以表示有理数的直线必须满足什么条件?从而得出数轴的概念以及数轴的三要素:原点、正方向、

12、单位长度。数轴:一般地,在数学中人们用画图的方式把数“直观化”。通常用一条直线上的点表示数,这条直线叫做数轴。数轴三要素:(1) 在直线上任取一个点表示数0,这个点叫做原点。(2) 通常规定直线上从原点向右(或上)为正方向,从原点向左(或下)为负方向。(3) 选取适当的长度为单位长度。【探索2】1、你能举出一些在现实生活中用直线表示数的实际例子吗?2、如果给你一些数,你能相应地在数轴上找出它们的准确位置吗?如果给你数轴上的点,你能读出它所表示的数吗?3、哪些数在原点的左边,哪些数在原点的右边,由此你会发现什么规律?4、每个数到原点的距离是多少?由此你会发现了什么规律?(小组讨论,交流归纳)归纳

13、出一般结论,教科书第9页的归纳。 一般地,设a是一个正数,则数轴上表示数a的点在原点的右边,与原点的距离是a个单位长度;表示数a的点在原点的左边,与原点的距离是a个单位长度。【练习】P10练习【小结】1、 数轴的三个要素;2、数轴的做法以及数与点的转化方法。第五课时1.2.3 相反数【教学目标】1、 掌握相反数的概念,进一步理解数轴上的点与数的对应关系;2、 通过归纳相反数在数轴上所表示的点的特征,培养归纳能力;3、 体验数形结合的思想。【教学难点】 归纳相反数在数轴上表示的点的特征【知识重点】 相反数的概念【探索1】请将下列4个数分成两类,并说出为什么要这样分类。4, 2,5,2允许学生有不

14、同的分法,只要能说出道理,都要给予鼓励,但教师要做适当的引导,逐渐得出5和5,2和2分别归类是具有较特征的分法。(引导学生观察与原点的距离)思考结论:P 10的思考:数轴上与原点的距离是2的点有几个?这些点表示的数是什么?与原点的距离是5的点有几个?这些点表示的数是什么?再换2个类似的数试一试。归纳:一般地,设a是一个正数,数轴上与原点的距离是a的点有两个,它们分别在原点左右,表示-a和a,我们说这两点关于原点对称。给出相反数的定义:只有符号不同的两个数叫做互为相反数。【探索2】你怎样理解相反数定义中的“只有符号不同”和“互为”一词的含义?零的相反数是什么?为什么?学生思考讨论交流,教师归纳总

15、结。规律:一般地,数a的相反数可以表示为a。0的相反数是0. 思考:数轴上表示相反数的两个点和原点有什么关系?(关于原点对称。)【练习】P11练习1【探索3】(5)和(5)分别表示什么意思?你能化简它们吗?学生交流。分别表示5和5的相反数是5和5【练习】P11页练习2、3。【小结】1、相反数的定义2、互为相反数的数在数轴上表示的点的特征3、怎样求一个数的相反数?怎样表示一个数的相反数?第六课时1.2.4 绝对值【教学目标】1、掌握绝对值的概念,有理数大小比较法则2、学会绝对值的计算,会比较两个或多个有理数的大小3、体验数学的概念、法则来自于实际生活,渗透数形结合和分类思想【教学难点】 两个负数

16、大小的比较【知识难点】 绝对值的概念【探索1】 两辆汽车从同一处O出发,分别向东、西方向行驶10km,到达A、B两处(A在原点右边,B在原点左边),它们的行驶路线相同马?它们行驶路程的远近(线段OA、OB的长度)相同吗?学生回答后,教师说明如下:数轴上表示数的点到原点的距离只与这个点离开原点的长度有关,而与它所表示的数的正负性无关;一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记做|a| 例如,上面的问题中|10|=10,|10|=10显然,|0|=0 由绝对值的定义可知:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;1的绝对值是0。(1) 当a是正数时,(2)|a|=a当

17、a是负数时,(3)|a|=-a当a=0时,|a|=0 【练习】P12练习1,2题【探索2】引导学生看教科书第12页的图,并回答相关问题:把14个气温从低到高排列;把这14个数用数轴上的点表示出来;观察并思考:观察这些点在数轴上的位置,并思考它们与温度的高低之间的关系,由此你觉得两个有理数可以比较大小吗?应怎样比较两个数的大小呢?学生交流后,教师总结:14个数从左到右的顺序就是温度从低到高的顺序:在数轴上表示有理数,它们从左到右的顺序就是从小到大的顺序,即左边的数小于右边的数在上面14个数中,选两个数比较,再选两个数试试,通过比较,归纳得出有理数大小比较法则想象练习:想象头脑中有一条数轴,其上有

18、两个点,分别表示数一100和一90,体会这两个点到原点的距离(即它们的绝对值)以及这两个数的大小之间的关系要求学生在头脑中有清晰的图形。结论:(1)正数大于0,0大于负数,正数大于负数。(2)两个负数,绝对值大的反而小。例题:P13例题:比较各数的大小(1)-(-1)和-(+2)(2)和 (3)-(-0.3)和|-|比较大小的过程要紧扣法则进行。结论:异号两数比较大小,要考虑它们的正负,同号两数比较大小,要考虑它们的绝对值。第七课时1.3.1 有理数的加法(1)【教学目标】1、理解有理数加法的实际意义。2、会作简单的加法计算。3、感受到原来用减法算的问题现在也可以用加法算。【探索1】(1)某仓

19、库第一天运进300吨化肥,第二天又运进200吨化肥,两天一共运进多少吨?(2)某仓库第一天运进300吨化肥,第二天运出200吨化肥,两天总的结果一共运进多少吨?(3)某仓库第一天运进300吨化肥,第二天又运进-200吨化肥, 两天一共运进多少吨?(4)把第(3)题的算式列为300+(-200),有道理吗?(5)某仓库第一天运进a吨化肥,第二天又运进b吨化肥,两天一共运进多少吨?【探索2】在足球比赛中,把进球数记为正数,失球数记为负数,它们的和叫做净胜球。如果红队进4个球,失2个球,篮球进1个球,失一个球,那么红队的净胜球为多少?蓝队呢?(思考)【小游戏】(请一位同学到黑板前)前进5步,又前进-

20、3步, 那么两次运动后总的结果是什么?若是后退-1步,又后退3步呢?【探索3】借助数轴讨论有理数的加法。(思考)一个物体做左右方向的运动,我们规定向左为负,向右为正。向右运动5m记作5m,向左运动5m记作-5m。(直接把向左运动记作负数)(1) 如果物体先向右运动5m,再向右运动3m,那么两次运动后总的结果是什么?(2) 如果物体先向左运动5m,再向左运动3m,那么两次运动后总的结果是什么?(3) 如果物体先向右运动5m,再向左运动3m,那么两次运动后总的结果是什么?利用数轴,求以下情况时物体两次运动的结果:(1) 先向右运动3m,再向左运动5m,物体从起点向左运动了2m。(2) 先向右运动5

21、m,再向左运动5m,物体从起点向左或右运动了0m。(3) 先向左运动5m,再向右运动5m,物体从起点向左或右运动了0m。结论:考虑有理数的运算时,既要考虑它的符号,又要考虑它的绝对值。【练习】P18练习1。补充练习:1.分别用加法和减法的算式表示下面每小题的结果(能求出得数最好):(1)仓库原有化肥200t,又运进-120t;(2)第一天盈利-300元, 第二天盈利100元.2.借助数轴用加法计算:(1)前进5米,又前进-3米, 那么两次运动后总的结果是什么?(2)上午8时的气温是-4,下午5时的气温比上午8时下降8, 下午5时的气温是多少?【小结】考虑有理数的运算结果时,既要考虑它的符号,又

22、要考虑第八课时1.3.1 有理数的加法(2) 【教学目标】1.进一步理解有理数加法的实际意义;2.经历探索有理数加法法则的过程,理解有理数加法法则;3.感受数学模型的思想;4.养成认真计算的习惯.【探索1】1.第一天营业赢利90元,第二天亏本80元,两天一共赢利多少元?如果第二天亏本120元呢?2正数和负数相加,结果是正数还是负数?法则理解:有理数加法法则第2条的前半部分是:绝对值不相等的异号两数相加,取_的符号,并用_减去_.例如(+6)+(-2) = +(6-2) = +4.答案+4之所以取+号,是因为两个加数(+6与-2)中_的绝对值较大;答案+4的绝对值4是由加数中较大的绝对值_减去较

23、小的绝对值_得到.又例,计算(-8)+(+3)时,先取_号,这是因为两个加数中,_的绝对值较大.然后再用较大的绝对值_减去较小的绝对值_,得_,于是最后得到答案是_.计算的过程可以写成(-8)+(+3) = -(8-3) = -5.【议一议】有人说,正数和负数相加时,实质就是把加法运算转化为”小学”的减法运算.他说的对不对?练习:1.第一场比赛红队胜黄队5:2,第二场比赛黄队胜蓝队3:1, 两场比赛黄队净胜几个球?2.如果物体先向右运动3米,再向右运动-3米,那么两次运动后总的结果是什么?3. 检查3包洗衣粉的重量(单位:克), 把其中超过标准重量的数量记为正数,不足的数量记作负数,结果如下:

24、-3.5,+1.2,-2.7.这3包洗衣粉的重量一共超过标准重量多少?【练习】P18.练习2(按例1格式算.)补充练习:(1)若m、n互为相反数,则m+n=_。(2)|a-3|+|2b+4|+|c-2|=0,求a+b+c的值。(3)若a是最小正整数,b为a的相反数,c是绝对值最小的数,求代数式2004(a+b)+2005c的值。【小结】有理数加法法则:1、同号两数相加,取相同的符号,并把绝对值相加。2、 绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。3、一个数同0相加,仍得这个数。第九课时1.3.1 有理数的加法(3)【教学

25、目标】1.理解有理数加法的运算律;2.能用运算律简化有理数加法的运算.【复习导入】1.小学时已学过的加法运算律有哪几条?2.猜一猜:在有理数的加法中,这两条运算律仍然适用吗?3.(1)计算30+(-20)=_=_,-20+30=_=_;(2)8+(-5)+(-4)=_=_, 8+(-5)+(-4)=_=_.你猜对了吗?换几个数试试。【试一试】你会用文字表述加法的两条运算律吗?你会用字母表示加法的这两条运算律吗?归纳:两个数相加,交换加数的位置,和不变。【加法交换律:a+b=b+a】 三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。【加法结合律:(a+b)+c=a+(b+c)】例题:

26、P19.例3 计算16+(-25)+24+(-35)利用加法交换律、结合律,可以使运算简化,认识运算律对于理解运算有很重要的意义。P19.例4.10袋小麦称后记录如图所示(单位:千克)。10袋小麦一共多少千克?如果每袋小麦以90千克为标准,10袋小麦总计超过多少千克或不足多少千克?(两种解法。)比较两种解法,解法2使用了哪些运算律?(加法交换律和结合律。)【练习】P20.练习1,2补充练习:小钱上周五以收盘价买进股票1000股,每股20元.下表为本周每日股票的涨跌情况(按收盘价即交易结束时的价格计算):星期一二三四五每股涨价(元)+0.6-1.3+1+0.7-2(1)到本周三收盘时,小钱所持股

27、票每股多少元?(2)本周内,股票最高价出现在星期几?是多少元?(3)已知小钱买进股票时付了4的手续费,卖出时又付成交额4的手续费和3的交易税,如果小钱在本周末以收盘价卖出全部股票,他的收益如何?【小结】1、两个数相加,交换加数的位置,和不变。2、三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。第十课时1.3.2 有理数的减法(1)【教学目标】1、经历探索有理数减法法则的过程;2、理解有理数减法法则,渗透化归思想;3、能较为熟练地进行两个有理数减法的运算;4、能解决简单的实际问题,体会数学与现实生活的联系【探索1】某地一天的气温是-34,求这天的温差。思考:如何解决问题?展示温度计,

28、让学生观察并回答问题。【探索2】如何计算4-(-3)呢?计算4-3就是求一个数“x”,使它加上3等于4,同样的,要计算4-(-3)就是求一个数“x”,使x与-3相加等于4即x+(-3)=4,因为7+(-3)=4,所以4-(-3)=7再提出4+?7?从而得出4-(-3)4+(+3)。计算9-8,9+(-8),15-7,15+(-7),你发现了什么?归纳:有理数的减法可以转化为加法来进行。有理数减法法则:减去一个数,等于加上这个数的相反数【探索3】你能够用字母把法则表示出来吗?a-ba+(-b)例题:P22例5(1)(-3)-(-5) (2)0-7(3)7.2-(-4.8) (4)(-3)-5【练

29、习】P23练习1,2补充练习:世界上最高的山峰是珠穆朗玛峰,其海拔高度大约是8848米,吐鲁番盆地的海拔高度大约是-155米,两处高度相差多少米?【小结】1、有理数的减法可以转化为加法。2、减正数即加负数,减负数即加正数。第十一课时1.3.2 有理数的减法(2)【教学目标】1、了解代数和的概念,理解有理数加减法可以互相转化,会进行加减混合运算;2.、通过学习一切加减法运算,都可以统一成加法运算,继续渗透数学的转化思想;3、通过加法运算练习,培养学生的运算能力。【探索1】思考:以前只有在a大于或等于b时,我们会做减法a-b(例如2-1,1-1)。现在你会在a小于b时做减法a-b(例如1-2,-1

30、-0)吗?小数减大数所得的差事什么数?先研究例题再回答。例题:P23例6计算(-20)+(+3)+(+5)-(+7)(分析:这个式子中有加法,也有减法,可以根据有理数减法法则,把它改写为几个有理数的加法。)归纳:引入相反数后,加减混合运算可以统一为加法运算。a+b-c=a+b+(-c) 【探索2】式子(-20)+(+3)+(+5)+(-7)有没有更简便的书写方法呢?提出可以省略式中的括号和加号,把它写成:-20+3+5-7读法是什么呢?有两种。(负20正3正5负7的和或者负20加3加5减7)注意:符号不要搞错。【练习】P24练习1 P25习题1.3第5题补充练习:【小结】引入相反数后,加减混合

31、运算可以统一为加法运算。a+b-c=a+b+(-c)第十二课时1.4.1 有理数的乘法(1)【教学目标】1.经历探索有理数乘法法则的过程,发展归纳、猜测等能力;2.能运用法则进行有理数乘法运算;3.能用乘法解决简单的实际问题.【探索1】一只蜗牛沿直线l爬行,它现在的位置恰在l上的点O。(用数轴表示。为区分方向,向左为负,向右为正,为区分时间,现在前为正,现在后为负)(1)如果蜗牛一只以每分2cm的速度向右爬行,3分后它在什么位置?(2)如果蜗牛一直以每分2cm的速度向左爬行,3分后它在什么位置?(3)如果蜗牛一只以每分2cm的速度向右爬行,3分前它在什么位置?(4)如果蜗牛一只以每分2cm的速

32、度向左爬行,3分前它在什么位置?思考:正数乘正数积为_数:负数乘正数积为_数;正数乘负数积为_数;负数乘负数积为_数。乘积的绝对值等于各乘数绝对值的_。【法则归纳】两数相乘,同号得_,异号得_,并把_相乘.任何数同0相乘,都得_.【探索2】在有理数范围内,我们仍然规定:乘积是1的两个数互为倒数. -0.2的倒数是多少?-7.29的倒数呢? -的倒数是_;0的倒数_._的两个数互为相反数。_的两个数互为倒数。若a+b=0,则a、b互为_数,若ab=1,则a、b互为_数。例题:P30例1计算(1)(-3) (2)(-)(-2)(有理数仍然有:乘积是1的两个数互为倒数。)【数a(a0)的倒数是什么?

33、】例2用正负数表示气温的变化量,上升为正,下降为负,登山队攀登一座山峰,每登高1km气温的变化量为-6,攀登3km后,气温有什么变化?【练习】P30 练习1,2,3【小结】有理数的乘方法则:1、两数相乘,同号得正,异号得负,并把绝对值相乘。2、任何数同0相乘,都得0。3、乘积是1的两个数互为倒数。第十三课时1.4.1 有理数的乘法(2)【教学目标】1.巩固有理数乘法法则;2.探索多个有理数相乘时,积的符号的确定方法.【探索1】1、下列各式的积为什么是负的?(1)-23456;(2)2(-3)4(-5)6789(-10).2、下列各式的积为什么是正的?(1)(-2)(-3)4567;(2)-23

34、45(-6)78(-9)(-10).思考:几个不是0的数相乘,积的符号与负因数的个数之间有什么关系?归纳:与两个有理数相乘一样,几个不等于0的有理数相乘,要先确定积的符号,再确定积的绝对值例题P31.例3计算多个不是0的数相乘,先做哪一步,再做哪一步?【探索2】思考:7.8(-8.1) 0(-19.6)归纳:几个数相乘,如果其中有因数为0,积等于0。【练习】P32练习补充练习:1.(1)若a = 3,a与2a哪个大?若 a= 0 呢? 又若 a=-3呢?(2)a与2a哪个大?(3)判断:9a一定大于2a; (4)判断:9a一定不小于2a.(5)判断:9a有可能小于2a.2.几个数相乘,积的符号

35、由负因数的个数决定 这句话错在哪里?3.若ab,则acbc吗?为什么?请举例说明.4.若mn=0,那么一定有( )(A)m=n=0.(B)m=0,n0.(C)m0,n=0.(D)m、n中至少有一个为0.【小结】1、几个不是0的数相乘,负因数的个数是偶数时,积食正数;负因数的个数是奇数时,积是负数。2、几个数相乘,如果其中有因数为0,积等于0。第十四课时1.4.1 有理数的乘法(3)【教学目标】1.熟练有理数乘法法则;2.探索运用乘法运算律简化运算.【探索1】你知道乘法的交换律和结合律吗?你会用字母表示它们吗?在有理数范围内,它们仍然成立吗?例如:5(-6)=(-6)5(结论:两个数相乘,交换因

36、数的位置,积相等,ab=ba)3(-4)=3(-4) (-5)(结论:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等,(ab)c=a(bc)53+(-7)=53+5(-7)(结论:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加,a(b+c)=ab+bc)例题:P33例4(用两种方法计算,比较哪种比较简便)思考:比较 上面两种解法,它们在运算顺序上有什么区别?解法2用了什么运算律?哪种解法运算量小?【探索2】下列计算若按顺序依次相乘怎样算? 用运算律为什么能简化运算?(1)2520044; (2) 19991258; 1999【练习】P33练习【小结】1、两个数相

37、乘,交换因数的位置,积相等,ab=ba;2、三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等,(ab)c=a(bc);3、一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加,a(b+c)=ab+bc;第十五课时1.4.2 有理数的除法(1)【教学目标】1理解有理数除法的意义,熟练掌握有理数除法法则,会进行有理数的除法运算;2了解倒数概念,会求给定有理数的倒数;3通过将除法运算转化为乘法运算,培养学生的转化的思想;通过有理数的除法运算,培养学生的运算能力。【探索1】怎样计算呢?根据除法的意义,这就是要求一个数,使它与-4相乘得8。思考并得出结论:归纳:除以一个不等于0的

38、数,等于乘这个数的倒数。()有理数的除法法则:两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0。例题:P34例5计算【练习】P35练习【探索2】分数可以理解分子除以分母吗?例题:P35例6化简下列分数。 归纳:因为有理数的除法可以化为乘法,所以可以利用乘法的运算性质简化运算。乘除混合运算往往先将除法化为乘法,然后确定积的符号,最后求出结果。【探索3】有理数的除法有时候能否用简便方法运算?例题:P35例7计算 【练习】P36练习1,2【小结】有理数的除法法则:除以一个不等于0的数,等于乘这个数的倒数。()第十六课时1.4.2 有理数的除法(2)【教学目标】1、了解

39、加减乘除四则运算的顺序。2、理解有理数的各种运算法则。3、掌握有理数的加减乘除混合运算。【探索1】回顾:小学里,加减乘除四则运算的顺序是怎么样呢?引导:首先计算小括号里的减法,然后再按照从左到右的顺序进行乘除运算,这样运算的步骤基本清楚了另外带分数进行乘除运算时,必须化成假分数。例题:P36例8计算归纳:有理数的加减乘除混合运算,如无括号则按照“先乘除,后加减”的顺序进行。【练习】P36练习【探索2】学习计算器的使用方法。例题:P36例9某公司去年1-3月平均每月亏损1.5万元,4-6月平均每月盈利2万元,7-10月平均每月盈利1.7万元,11-12月平均每月亏损2.3万元,这个公司去年总的盈

40、亏情况如何?【练习】P37练习补充练习:【小结】有理数的加减乘除混合运算,如无括号则按照“先乘除,后加减”的顺序进行。第十七课时1.5.1 有理数的乘方(1)【教学目标】1、在现实背景中,理解有理数乘方的意义。2、能进行有理数的乘方运算,并会用计算器进行乘方运算。3、掌握幂的符号法则。【探索1】回顾:边长为a的正方形的面积是aa,棱长为a的正方体的体积是aaa。引导:如何简写aa和aaa?那么n个a相乘呢?归纳:一般地,n个相同的因数a相乘,记作,读作a的n次幂。概念:求n个相同因数的积得运算,叫做乘方,乘方的结果叫做幂。在中,a叫做底数,n叫做指数。例题:P41例1计算 【探索2】(-2)和

41、-2,(-)和-之间的区别。它们的读法分别是什么?(-2)读作-2的三次方,-2读作2的三次方的相反数。(-)是-的平方,而-仅仅是2平方了而已,3并没有平方。归纳:当指数是奇数时,负数的幂为负数。当指数是偶数时,负数的幂是正数。正数的任何次幂都是正数,0的任何正整数次幂都是0.【练习】P42练习1【探索3】学会用计算器计算乘方。例题:P42例2用计算器计算和【练习】P42练习2【小结】负数的奇数次幂是负数,负数的偶次幂是正数;正数的任何次幂是正数;0的任何次幂是0。第十八课时1.5.1 有理数的乘方(2)【教学目标】1、能确定有理数加、减、乘、除、乘方混合运算的顺序;2、会进行有理数的混合运

42、算;3、培养学生正确迅速的运算能力。【探索1】在2+(6)这个式子中,存在着哪几种运算?思考并归纳做有理数的混合运算时,应注意哪些运算顺序?(1) 先算乘方,再算乘除,最后算加减;(2) 同级运算,从左到右进行;(3) 如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。例题:P43例3【练习】P44练习补充练习:(1)(2)(3)【探索2】乘方的特殊应用。例题:P43例4观察下面三行数:-2,4,-8,16,-32,64, 0,6,-6,18,-30,66, -1,2,-4,8,-16,32, (1)第行数按什么规律排列?(2)第行数与第行数分别有什么关系?(3)取每行数的第10个

43、数,计算这三个数的和。【小结】做有理数的混合运算时要注意先后顺序。第十九课时1.5.2 科学记数法【教学目标】1、 利用10的乘方,进行科学记数,会用科学记数法表示大于10的数。2、 体会科学记数法的好处,化繁为简的方法。3、 会解决与科学记数法有关的实际问题。【探索1】目前世界人口约为65亿,光速约300000000米/秒,太阳半径约696000千米等,这些数字这么大,怎么表示才比较方便呢?引入科学记数法:可以用一种简单的方法来表示这些读和写都比较困难的大数,那就是科学记数法。【探索2】你知道分别等于多少吗?的意义和规律是什么?如:567000000=5.67100000000=5.67归纳:把一个大于10的数表示成的形式(其中a是整数数位只有一位的数,n是整数),使用的是科学

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 小学资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁