最新高中数学必修集合与函数知识点总结 .docx

上传人:C****o 文档编号:25971540 上传时间:2022-07-15 格式:DOCX 页数:13 大小:316.16KB
返回 下载 相关 举报
最新高中数学必修集合与函数知识点总结 .docx_第1页
第1页 / 共13页
最新高中数学必修集合与函数知识点总结 .docx_第2页
第2页 / 共13页
点击查看更多>>
资源描述

《最新高中数学必修集合与函数知识点总结 .docx》由会员分享,可在线阅读,更多相关《最新高中数学必修集合与函数知识点总结 .docx(13页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结(1) 集合的概念高中数学必修 1 学问点总结第一章集合与函数概念【1.1.1 】集合的含义与表示可编辑资料 - - - 欢迎下载精品名师归纳总结集合中的元素具有确定性、互异性和无序性.(2) 常用数集及其记法N 表示自然数集, N或 N 表示正整数集, Z 表示整数集, Q 表示有理数集, R 表示实数集 .(3) 集合与元素间的关系对象 a 与集合 M 的关系是 aM ,或者 aM ,两者必居其一 .(4) 集合的表示法自然语言法:用文字表达的形式来描述集合.列举法:把集合中的元素一一列举出来,写在大括号内表示集合.描述法:

2、x | x 具有的性质 ,其中 x 为集合的代表元素 .图示法:用数轴或韦恩图来表示集合.(5) 集合的分类含有有限个元素的集合叫做有限集. 含有无限个元素的集合叫做无限集. 不含有任何元素的集合叫做空集 .可编辑资料 - - - 欢迎下载精品名师归纳总结(6) 子集、真子集、集合相等【1.1.2 】集合间的基本关系可编辑资料 - - - 欢迎下载精品名师归纳总结名称记号意义性质示意图可编辑资料 - - - 欢迎下载精品名师归纳总结AB(或A 中的任一元素都属子集(1) AA(2) AABBA可编辑资料 - - - 欢迎下载精品名师归纳总结于 BBA(3) 如 A(4) 如 AB 且 BC ,

3、就 ACB 且 BA ,就 AB或可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结真子集ABAB ,且 B 中至少(1)A( A 为非空子集)BA可编辑资料 - - - 欢迎下载精品名师归纳总结(或 BA)有一元素不属于 A2如 AB 且 BC ,就 AC可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结集合相等ABA 中的任一元素都属于 B,B 中的任一元素都属于 A(1) AB(2) BAAB可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结( 7)已

4、知集合A 有 nn1 个元素,就它有 2n 个子集,它有2n1个真子集,它有 21 个非空子集,可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结n它有 2n2 非空真子集 .【1.1.3 】集合的基本运算可编辑资料 - - - 欢迎下载精品名师归纳总结(8)交集、并集、补集名称记号意义性质示意图(1) AAA可编辑资料 - - - 欢迎下载精品名师归纳总结 x | xA, 且AB交集xB(2) A(3) ABAABABB可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结 x | xA,并集ABxB(

5、1) AAA或( 2) AA( 3) ABAABBAB1 A eU A可编辑资料 - - - 欢迎下载精品名师归纳总结补集eU A x | xU , 且xA痧U AB痧U ABU A.U BU A.U B2 AeU AU可编辑资料 - - - 欢迎下载精品名师归纳总结【补充学问】含肯定值的不等式与一元二次不等式的解法( 1)含肯定值的不等式的解法不等式解集可编辑资料 - - - 欢迎下载精品名师归纳总结| x |aa0 x |axa可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结| x |a a0x | xa 或 xa可编辑资料 - - - 欢迎

6、下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结| axb |c,| axb |cc0把 axb 看成 一 个 整 体 , 化 成 | x |a ,可编辑资料 - - - 欢迎下载精品名师归纳总结( 2)一元二次不等式的解法判别式| x |aa0 型不等式来求解可编辑资料 - - - 欢迎下载精品名师归纳总结2000b4ac二次函数可编辑资料 - - - 欢迎下载精品名师归纳总结yax2的图象bxca0O可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结一 元二次 方程2x1,2bb22a4acb可编辑资料 - - - 欢迎下载

7、精品名师归纳总结axbxc的根0 a0(其中 x1x2x1x22 a无实根可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结2axbxc的解集0a0 x | xx1 或xx2b x | x2aR可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结2axbxc的解集0 a0 x | x1xx2可编辑资料 - - - 欢迎下载精品名师归纳总结1.2函数及其表示【1.2.1 】函数的概念( 1)函数的概念可编辑资料 - - - 欢迎下载精品名师归纳总结设 A 、 B 是两个非空的数集,假如依据某种对应法就f ,

8、对于集合A 中任何一个数 x ,可编辑资料 - - - 欢迎下载精品名师归纳总结在集合 B 中都有唯独确定的数f x和它对应,那么这样的对应(包括集合A , B 以及 A 到可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结B 的对应法就 f )叫做集合 A 到 B 的一个函数,记作函数的三要素 :定义域、值域和对应法就f : AB 可编辑资料 - - - 欢迎下载精品名师归纳总结只有定义域相同,且对应法就也相同的两个函数才是同一函数( 2)区间的概念及表示法设 a, b 是两个实数, 且 ab,满意 axb 的实数 x 的集合叫做闭区间,记做 a

9、,b 。满足 axb 的实数 x 的集合叫做开区间, 记做 a, b 。满意 axb ,或 axb 的实数 x可编辑资料 - - - 欢迎下载精品名师归纳总结的集合叫做半开半闭区间,分别记做 a,b , a, b 。满意的集合分别记做 a, a,b,b xa, xa, xb, xb 的实数 x可编辑资料 - - - 欢迎下载精品名师归纳总结留意: 对于集合 x | axb 与区间 a, b ,前者 a 可以大于或等于 b ,而后者必需ab ( 3)求函数的定义域时,一般遵循以下原就:可编辑资料 - - - 欢迎下载精品名师归纳总结 f x是整式时,定义域是全体实数可编辑资料 - - - 欢迎下

10、载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结 f x f x是分式函数时,定义域是使分母不为零的一切实数是偶次根式时,定义域是使被开方式为非负值时的实数的集合可编辑资料 - - - 欢迎下载精品名师归纳总结对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1可编辑资料 - - - 欢迎下载精品名师归纳总结xk ytan x 中,kZ 2可编辑资料 - - - 欢迎下载精品名师归纳总结零(负)指数幂的底数不能为零如 f x 是由有限个基本初等函数的四就运算而合成的函数时,就其定义域一般是各基本初等函数的定义域的交集可编辑资料 - - - 欢迎下载精

11、品名师归纳总结对于求复合函数定义域问题,一般步骤是:如已知f x的定义域为 a, b,其复合函数可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结f g x 的定义域应由不等式ag xb 解出可编辑资料 - - - 欢迎下载精品名师归纳总结对于含字母参数的函数,求其定义域,依据问题详细情形需对字母参数进行分类争论由实际问题确定的函数,其定义域除使函数有意义外,仍要符合问题的实际意义( 4)求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的事实上,假如在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值因此求函数的最值

12、与值域,其实质是相同的,只是提问的角度不同求函数值域与最值的常用方法:观看法:对于比较简洁的函数,我们可以通过观看直接得到值域或最值配方法: 将函数解析式化成含有自变量的平方式与常数的和,然后依据变量的取值范畴确定函数的值域或可编辑资料 - - - 欢迎下载精品名师归纳总结最 值 判 别 式 法 : 如 函 数yf x可 以 化 成 一 个 系 数 含 有 y 的 关 于 x 的 二 次 方 程可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结a y x2b yxc y0, 就 在a y0时 , 由 于x, y为 实 数 , 故 必 须 有可编辑资

13、料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结b 2 y4a yc y0 ,从而确定函数的值域或最值可编辑资料 - - - 欢迎下载精品名师归纳总结不等式法:利用基本不等式确定函数的值域或最值换元法: 通过变量代换达到化繁为简、化难为易的目的, 三角代换可将代数函数的最值问题转化为三角函数的最值问题反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值数形结合法:利用函数图象或几何方法确定函数的值域或最值函数的单调性法【1.2.2】函数的表示法( 5)函数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种解析法:就是用数学

14、表达式表示两个变量之间的对应关系列表法:就是列出表格来表示两个变量之间的对应关系图象法:就是用图象表示两个变量之间的对应关系( 6)映射的概念设 A 、 B 是两个集合,假如依据某种对应法就f ,对于集合 A 中任何一个元素,在集合B 中都有唯独的元素和它对应,那么这样的对应(包括集合A , B 以及 A 到 B 的对应法就 f )叫做集合A 到 B 的映可编辑资料 - - - 欢迎下载精品名师归纳总结射,记作f : AB 可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结给定一个集合 A 到集合 B 的映射,且aA, bB 假如元素 a 和元素

15、b 对应,那么我们把元素b 叫可编辑资料 - - - 欢迎下载精品名师归纳总结做元素 a 的象,元素 a 叫做元素 b 的原象1.3函数的基本性质【1.3.1】单调性与最大(小)值( 1)函数的单调性定义及判定方法函数的定义图象判定方法可编辑资料 - - - 欢迎下载精品名师归纳总结性 质假如对于属于定义域I 内某个区间上的任意两个自变量的值x1、x2,当 x1x2 时,都有 fx1fx2,那么就说 fx在这个区间上y y=fXfx1 fx2 ( 1)利用定义( 2)利用已知函数的单调性( 3)利用函数图象(在某个区间图可编辑资料 - - - 欢迎下载精品名师归纳总结函数的单调性是增函数 o假

16、如对于属于定义域I内某y个区间上的任意两个自变量 的值 x 1、x2 ,当 x1 fx2 , 那 么 就说x1x 2 xy=fXfx 1fx2 象上升为增)( 4)利用复合函数( 1)利用定义( 2)利用已知函数的单调性( 3)利用函数图象 (在某个区间图可编辑资料 - - - 欢迎下载精品名师归纳总结fx在这个区间上是 减函数ox1x 2x象下降为减)( 4)利用复合函数可编辑资料 - - - 欢迎下载精品名师归纳总结在公共定义域内, 两个增函数的和是增函数, 两个减函数的和是减函数, 增函数减去一个减函数为增函数,减函数减去一个增函数为减函数可编辑资料 - - - 欢迎下载精品名师归纳总结

17、对于复合函数yf g x ,令 ug x ,如yf u 为增,ug x 为增,就yf gx可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结为增。如yf u为减,ug x 为减,就yf g x 为增。如yf u为增,ug x可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结为减,就yf g x 为减。如yf u 为减,ug x 为增,就yf gx 为减 y可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结(2) 打“”函数f xxa a x0 的图象与性质可

18、编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结f x 分别在 ,a 、a , 上为增函数,分别在 a ,0、 0,a 上可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结为减函数(3) 最大(小)值定义一般的,设函数oxyf x 的定义域为 I ,假如存在实数 M 满意:( 1)对于任意的可编辑资料 - - - 欢迎下载精品名师归纳总结x I ,都有 f xM 。可编辑资料 - - - 欢迎下载精品名师归纳总结(2)存在 x0I ,使得f x0M 那么,我们称 M 是函数f x的最大值,记可编辑资料

19、- - - 欢迎下载精品名师归纳总结作 f max xM 可编辑资料 - - - 欢迎下载精品名师归纳总结(4) 函数的奇偶性定义及判定方法函数的性 质【1.3.2 】奇偶性定义图象判定方法可编辑资料 - - - 欢迎下载精品名师归纳总结函数的奇偶性假如对于函数 fx定义域内任意一个 x,都有 fx= fx,那么函数 fx 叫做 奇函数假如对于函数 fx定义域内任意一个 x,都有 fx=fx ,那么函数 fx叫做 偶函数( 1)利用定义(要先判肯定义域是否关于原点对称)( 2)利用图象(图象关于原点对称)( 1)利用定义(要先判肯定义域是否关于原点对称)( 2)利用图象(图象关于 y 轴对称)

20、可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结如函数f x为奇函数,且在 x0 处有定义,就f 00 可编辑资料 - - - 欢迎下载精品名师归纳总结奇函数在 y 轴两侧相对称的区间增减性相同,偶函数在y 轴两侧相对称的区间增减性相反在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数补充学问函数的图象(1)作图利用描点法作图:确定函数的定义域。化解函数解析式。争论函数的性质(奇偶性、单调性)。画出函数的图象 利用基本函数图象的变换作图:

21、要精确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数、三角函数等各种基本初等函数的图象平移变换可编辑资料 - - - 欢迎下载精品名师归纳总结y f xyf xh 0,左移 h个单位h 0,右移 | h|个单位k 0, 上移k个单位k 0,下移 | k |个单位yf xhyf xk可编辑资料 - - - 欢迎下载精品名师归纳总结伸缩变换可编辑资料 - - - 欢迎下载精品名师归纳总结yf x01,伸1,缩yf x可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结yf x0 A 1,缩A 1,伸yAf x可编辑资料 - - - 欢迎下

22、载精品名师归纳总结对称变换可编辑资料 - - - 欢迎下载精品名师归纳总结yf xx轴yf xyf xy轴yf x可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结yf x原点yf xyf x直线y xyf 1 x可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结yf x去掉 y轴左边图象保留y轴右边图象,并作其关于y轴对称图象yf | x |可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结yf(2)识图x保留x轴上方图象 将x轴下方图象翻折上去y| f x |可编辑资料 - - - 欢迎下载精品名师归纳总结对于给定函数的图象, 要能从图象的左右、 上下分别范畴、 变化趋势、 对称性等方面争论函数的定义域、值域、单调性、奇偶性,留意图象与函数解析式中参数的关系(3)用图函数图象形象的显示了函数的性质,为争论数量关系问题供应了“形”的直观性,它是探求解题途径, 获得问题结果的重要工具要重视数形结合解题的思想方法可编辑资料 - - - 欢迎下载

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 高考资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁