《2.2.2 椭圆的几何性质(一).doc》由会员分享,可在线阅读,更多相关《2.2.2 椭圆的几何性质(一).doc(4页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2.2.2椭圆的几何性质(一)一、根底过关1点(3,2)在椭圆1上,那么()A点(3,2)不在椭圆上B点(3,2)不在椭圆上C点(3,2)在椭圆上D无法判断点(3,2)、(3,2)、(3,2)是否在椭圆上2椭圆以两条坐标轴为对称轴,一个顶点是(0,13),另一个顶点是(10,0),那么焦点坐标为()A(13,0) B(0,10)C(0,13) D(0,)3椭圆x24y21的离心率为()A. B. C. D.4过椭圆1 (ab0)的左焦点F1作x轴的垂线交椭圆于点P,F2为右焦点,假设F1PF260,那么椭圆的离心率为()A. B. C. D.5椭圆x2my21的焦点在y轴上,长轴长是短轴长的两
2、倍,那么m的值是()A. B. C2 D46椭圆的中心在原点,焦点在y轴上,假设其离心率为,焦距为8,那么该椭圆的方程是_7分别求适合以下条件的椭圆的标准方程:(1)离心率是,长轴长是6.(2)在x轴上的一个焦点与短轴两个端点的连线互相垂直,且焦距为6.二、能力提升8椭圆1和k (k0,a0,b0)具有()A相同的顶点 B相同的离心率C相同的焦点 D相同的长轴和短轴9假设椭圆x2my21的离心率为,那么m_.10设椭圆的两个焦点分别为F1、F2,过F2作椭圆长轴的垂线交椭圆于点P,假设F1PF2为等腰直角三角形,那么椭圆的离心率是_11椭圆x2(m3)y2m (m0)的离心率e,求m的值及椭圆
3、的长轴和短轴的长、焦点坐标、顶点坐标1 (ab0)的左焦点为F1(c,0),A(a,0),B(0,b)是两个顶点,如果F1到直线AB的距离为,求椭圆的离心率e.三、探究与拓展13椭圆1 (ab0),A(2,0)为长轴的一个端点,过椭圆的中心O的直线交椭圆于B、C两点,且0,|2|,求此椭圆的方程答案1C2D3A4B5A6.17解(1)设椭圆的方程为1 (ab0)或1 (ab0)由得2a6,e,a3,c2.b2a2c2945.椭圆的标准方程为1或1.(2)设椭圆方程为1 (ab0)如下列图,A1FA2为一等腰直角三角形,OF为斜边A1A2的中线(高),且|OF|c,|A1A2|2b,cb3,a2
4、b2c218,故所求椭圆的标准方程为1.8B9.或410.111解椭圆方程可化为1,m0,m,即a2m,b2,c.由e,得,解得m1,椭圆的标准方程为x21,a1,b,c,椭圆的长轴长为2,短轴长为1,两焦点坐标分别为,顶点坐标分别为(1,0),(1,0),.12解由A(a,0),B(0,b),得直线AB的斜率为kAB,故AB所在的直线方程为ybx,即bxayab0.又F1(c,0),由点到直线的距离公式可得d,(ac),又b2a2c2,整理,得8c214ac5a20,即821450,8e214e50,e或e(舍去)综上可知,椭圆的离心率为e.13解|2|,|2|.又0,ACBC.AOC为等腰直角三角形|OA|2,C点的坐标为(1,1)或(1,1),C点在椭圆上,a2,1,b2.所求椭圆的方程为1.