2022年最后总结初中数学知识点复习资料 .pdf

上传人:H****o 文档编号:25337133 上传时间:2022-07-11 格式:PDF 页数:38 大小:1.13MB
返回 下载 相关 举报
2022年最后总结初中数学知识点复习资料 .pdf_第1页
第1页 / 共38页
2022年最后总结初中数学知识点复习资料 .pdf_第2页
第2页 / 共38页
点击查看更多>>
资源描述

《2022年最后总结初中数学知识点复习资料 .pdf》由会员分享,可在线阅读,更多相关《2022年最后总结初中数学知识点复习资料 .pdf(38页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、1 知识点 1:一元二次方程的基本概念1一元二次方程3x2+5x-2=0 的常数项是 -2. 2一元二次方程3x2+4x-2=0 的一次项系数为4,常数项是 -2. 3一元二次方程3x2-5x-7=0 的二次项系数为3,常数项是 -7. 4把方程3x(x-1)-2=-4x化为一般式为3x2-x-2=0. 知识点 2:直角坐标系与点的位置1直角坐标系中,点A(3, 0)在 y 轴上。2直角坐标系中,x 轴上的任意点的横坐标为0. 3直角坐标系中,点A(1, 1)在第一象限 . 4直角坐标系中,点A(-2,3)在第四象限. 5直角坐标系中,点A(-2,1)在第二象限. 知识点 3:已知自变量的值求

2、函数值1当 x=2 时,函数 y=32x的值为 1. 2当 x=3 时,函数 y=21x的值为 1. 3当 x=-1 时,函数 y=321x的值为 1. 知识点 4:基本函数的概念及性质1函数 y=-8x 是一次函数 . 2函数 y=4x+1 是正比例函数. 3函数xy21是反比例函数. 4抛物线y=-3(x-2)2-5 的开口向下 . 5抛物线y=4(x-3)2-10 的对称轴是x=3. 6抛物线2)1(212xy的顶点坐标是 (1,2). 7反比例函数xy2的图象在第一、三象限. 知识点 5:数据的平均数中位数与众数1数据 13,10,12,8,7 的平均数是10. 2数据 3,4,2,4

3、,4 的众数是4. 3数据 1, 2,3,4,5 的中位数是3. 知识点 6:特殊三角函数值1cos30= 23. 2sin260+ cos260 = 1. 32sin30 + tan45= 2. 4tan45= 1. 5cos60+ sin30= 1. 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 1 页,共 38 页2 知识点 7:圆的基本性质1半圆或直径所对的圆周角是直角. 2任意一个三角形一定有一个外接圆. 3在同一平面内,到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆. 4在同圆或等圆中,相等的圆心角所对的弧相等. 5同

4、弧所对的圆周角等于圆心角的一半. 6同圆或等圆的半径相等. 7过三个点一定可以作一个圆. 8长度相等的两条弧是等弧. 9在同圆或等圆中,相等的圆心角所对的弧相等. 10经过圆心平分弦的直径垂直于弦。知识点 8:直线与圆的位置关系1直线与圆有唯一公共点时,叫做直线与圆相切. 2三角形的外接圆的圆心叫做三角形的外心. 3弦切角等于所夹的弧所对的圆心角. 4三角形的内切圆的圆心叫做三角形的内心. 5垂直于半径的直线必为圆的切线. 6过半径的外端点并且垂直于半径的直线是圆的切线. 7垂直于半径的直线是圆的切线. 8圆的切线垂直于过切点的半径. 知识点 9:圆与圆的位置关系1两个圆有且只有一个公共点时,

5、叫做这两个圆外切. 2相交两圆的连心线垂直平分公共弦. 3两个圆有两个公共点时,叫做这两个圆相交. 4两个圆内切时,这两个圆的公切线只有一条. 5相切两圆的连心线必过切点. 知识点 10:正多边形基本性质1正六边形的中心角为60. 2矩形是正多边形. 3正多边形都是轴对称图形. 4正多边形都是中心对称图形. 知识点 11:一元二次方程的解1方程042x的根为. A x=2 Bx=-2 C x1=2,x2=-2 Dx=4 2方程 x2-1=0 的两根为. A x=1 Bx=-1 Cx1=1,x2=-1 Dx=2 3方程( x-3)( x+4)=0 的两根为. A.x1=-3,x2=4 B.x1=

6、-3,x2=-4 C.x1=3,x2=4 D.x1=3,x2=-4 4方程 x(x-2)=0 的两根为. A x1=0,x2=2 Bx1=1,x2=2 Cx1=0,x2=-2 Dx1=1,x2=-2 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 2 页,共 38 页3 5方程 x2-9=0 的两根为. A x=3 Bx=-3 Cx1=3,x2=-3 D x1=+3,x2=-3知识点 12:方程解的情况及换元法1一元二次方程02342xx的根的情况是 . A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根2不解方程 ,判

7、别方程3x2-5x+3=0 的根的情况是. A.有两个相等的实数根B. 有两个不相等的实数根C.只有一个实数根D. 没有实数根3不解方程 ,判别方程3x2+4x+2=0 的根的情况是. A.有两个相等的实数根B. 有两个不相等的实数根C.只有一个实数根D. 没有实数根4不解方程 ,判别方程4x2+4x-1=0 的根的情况是. A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根5不解方程 ,判别方程5x2-7x+5=0 的根的情况是. A.有两个相等的实数根B. 有两个不相等的实数根C.只有一个实数根D. 没有实数根6不解方程 ,判别方程5x2+7x=-5 的根的情况

8、是. A.有两个相等的实数根B. 有两个不相等的实数根C.只有一个实数根D. 没有实数根7不解方程 ,判别方程x2+4x+2=0 的根的情况是. A.有两个相等的实数根B. 有两个不相等的实数根C.只有一个实数根D. 没有实数根8. 不解方程 ,判断方程5y2+1=25y 的根的情况是A.有两个相等的实数根B. 有两个不相等的实数根C.只有一个实数根D. 没有实数根9. 用 换元 法解方 程4)3(5322xxxx时, 令32xx= y ,于 是原方程变为 .A.y2-5y+4=0 B.y2-5y-4=0 C.y2-4y-5=0 D.y2+4y-5=0 10. 用换元法解方程4)3(5322x

9、xxx时,令23xx= y , 于 是原方程变为 .A.5y2-4y+1=0 B.5y2-4y-1=0 C.-5y2-4y-1=0 D. -5y2-4y-1=0 11. 用换元法解方程(1xx)2-5(1xx)+6=0 时,设1xx=y,则原方程化为关于y 的方程是. A.y2+5y+6=0 B.y2-5y+6=0 C.y2+5y-6=0 D.y2-5y-6=0 知识点 13:自变量的取值范围1函数2xy中,自变量x 的取值范围是 . 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 3 页,共 38 页4 A.x 2 B.x-2 C.x-2 D.x

10、 -2 2函数 y=31x的自变量的取值范围是. A.x3 B. x 3 C. x3 D. x 为任意实数3函数 y=11x的自变量的取值范围是. A.x -1 B. x-1 C. x1 D. x-1 4函数 y=11x的自变量的取值范围是. A.x 1 B.x1 C.x 1 D.x 为任意实数5函数 y=25x的自变量的取值范围是. A.x5 B.x5 C.x5 D.x 为任意实数知识点 14:基本函数的概念1下列函数中,正比例函数是 . A. y=-8x B.y=-8x+1 C.y=8x2+1 D.y=x82下列函数中,反比例函数是 . A. y=8x2B.y=8x+1 C.y=-8x D

11、.y=-x83下列函数:y=8x2;y=8x+1 ;y=-8x ;y=-x8.其 中,一次 函数有个 . A.1 个B.2 个C.3 个D.4 个知识点 15:圆的基本性质1如图,四边形ABCD 内接于 O,已知 C=80,则 A 的度数是 . A. 50B. 80C. 90D. 1002已知: 如 图, O中, 圆周角 BAD=50 ,则圆周角 BCD 的度数是 . A.100 B.130C.80D.503已知: 如 图, O中, 圆心角 BOD=100,则圆周角 BCD 的度数是 . A.100 B.130C.80D.504已知:如图,四边形ABCD 内接于 O,则下列结论中正确的是 .

12、A.A+ C=180B.A+ C=90C.A+B=180 D.A+ B=90 5半径为5cm 的圆中 ,有一条长为6cm 的弦 ,则圆心到此弦的距离为. A.3cm B.4cm C.5cm D.6cm 6已知:如图,圆周角BAD=50 ,则圆心角 BOD 的度数是. A.100 B.130C.80D.50 7已知: 如 图, O中,弧 AB的度数为 100 ,则圆周角 ACB 的度数是 . A.100 B.130C.200D.50 8. 已知: 如 图,O中, 圆周角 BCD=130,则圆心角 BOD 的度数是 . A.100 B.130C.80D.50?DBCAO?BOCAD?CBAO?BO

13、CAD?BOCAD?BOCAD精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 4 页,共 38 页5 9. 在 O 中 ,弦 AB 的长为 8cm,圆心 O 到 AB 的距离为3cm,则 O 的半径为cm. A.3 B.4 C.5 D. 10 10. 已知: 如 图, O中,弧AB的度数为 100,则圆周角 ACB 的度数是 . A.100 B.130C.200D.50 12在半径为5cm 的圆中 ,有一条弦长为6cm,则圆心到此弦的距离为. A. 3cm B. 4 cm C.5 cm D.6 cm 知识点 16:点、直线和圆的位置关系1已知 O

14、的半径为10 ,如果一条直线和圆心O 的距离为10 ,那么这条直线和这个圆的位置关系为 . A.相离B.相切C.相交D. 相交或相离2已知圆的半径为6.5cm,直线 l 和圆心的距离为7cm,那么这条直线和这个圆的位置关系是. A.相切B.相离C.相交D. 相离或相交3已知圆 O 的半径为 6.5cm,PO=6cm, 那么点 P和这个圆的位置关系是A.点在圆上B. 点在圆内C. 点在圆外D.不能确定4已知圆的半径为6.5cm,直线 l 和圆心的距离为4.5cm,那么这条直线和这个圆的公共点的个数是. A.0 个B.1 个C.2 个D.不能确定5一个圆的周长为a cm,面积为 a cm2,如果一

15、条直线到圆心的距离为cm,那么这条直线和这个圆的位置关系是 . A.相切B.相离C.相交D. 不能确定6已知圆的半径为6.5cm,直线 l 和圆心的距离为6cm,那么这条直线和这个圆的位置关系是. A.相切B.相离C.相交D.不能确定7. 已知圆的半径为6.5cm,直线 l 和圆心的距离为4cm,那么这条直线和这个圆的位置关系是. A.相切B.相离C.相交D. 相离或相交8. 已知O 的半径为 7cm,PO=14cm, 则 PO的中点和这个圆的位置关系是 . A.点在圆上B. 点在圆内C. 点在圆外D.不能确定知识点 17:圆与圆的位置关系1 O1和 O2的半径分别为3cm 和 4cm,若 O

16、1O2=10cm,则这两圆的位置关系是 . A. 外离B. 外切C. 相交D. 内切2已知 O1、 O2的半径分别为3cm 和 4cm,若 O1O2=9cm,则这两个圆的位置关系是. A.内切B. 外切C. 相交D. 外离3已知 O1、 O2的半径分别为3cm 和 5cm,若 O1O2=1cm,则这两个圆的位置关系是. A.外切B.相交C. 内切D. 内含4已知 O1、 O2的半径分别为3cm 和 4cm,若 O1O2=7cm,则这两个圆的位置关系是. A.外离B. 外切C.相交D.内切5已知 O1、O2的半径分别为3cm 和 4cm,两圆的一条外公切线长43,则两圆的位置关系是. A.外切B

17、. 内切C.内含D. 相交6已知 O1、 O2的半径分别为2cm 和 6cm,若 O1O2=6cm,则这两个圆的位置关系是. A.外切B.相交C. 内切D. 内含知识点 18:公切线问题1如果两圆外离,则公切线的条数为. A. 1 条B.2 条C.3 条D.4 条?CBAO精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 5 页,共 38 页6 2如果两圆外切,它们的公切线的条数为. A. 1 条B. 2 条C.3 条D.4 条3如果两圆相交,那么它们的公切线的条数为. A. 1 条B. 2 条C.3 条D.4 条4如果两圆内切,它们的公切线的条数为

18、 . A. 1 条B. 2 条C.3 条D.4 条5. 已知 O1、 O2的半径分别为3cm 和 4cm,若 O1O2=9cm,则这两个圆的公切线有条. A.1 条B. 2 条C. 3 条D. 4 条6已知 O1、 O2的半径分别为3cm 和 4cm,若 O1O2=7cm,则这两个圆的公切线有条. A.1 条B. 2 条C. 3 条D. 4 条知识点 19:正多边形和圆1如果 O 的周长为10cm,那么它的半径为 . A. 5cm B. 10 cm C.10cm D.5 cm 2正三角形外接圆的半径为2,那么它内切圆的半径为 . A. 2 B. 3C.1 D.23已知 ,正方形的边长为2,那么

19、这个正方形内切圆的半径为. A. 2 B. 1 C.2D.34扇形的面积为32,半径为 2,那么这个扇形的圆心角为= . A.30 B.60C.90D. 1205已知 ,正六边形的半径为R,那么这个正六边形的边长为 . A.21R B.R C.2R D.R36圆的周长为C,那么这个圆的面积S= . A.2CB.2CC.22CD.42C7正三角形内切圆与外接圆的半径之比为 . A.1:2 B.1:3C.3:2 D.1:28. 圆的周长为C,那么这个圆的半径R= . A.2CB. CC. 2CD. C9.已知 ,正方形的边长为2,那么这个正方形外接圆的半径为. A.2 B.4 C.22D.2310

20、已知 ,正三角形的半径为3,那么这个正三角形的边长为 . A. 3 B. 3C.32D.33知识点 20:函数图像问题精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 6 页,共 38 页7 个根为21x, 且二次函数cbxaxy2的对称轴是1已知:关于x 的一元二次方程32cbxax的一直线 x=2,则抛物线的顶点坐标是 . A. (2 ,-3) B. (2 ,1) C. (2,3) D. (3,2) 2若抛物线的解析式为y=2(x-3)2+2,则它的顶点坐标是. A.(-3,2) B.(-3,-2) C.(3,2) D.(3,-2) 3一次函数y

21、=x+1 的图象在. A.第一、二、三象限B. 第一、三、四象限C. 第一、二、四象限D. 第二、三、四象限4函数 y=2x+1 的图象不经过. A.第一象限B. 第二象限C. 第三象限D. 第四象限5反比例函数y=x2的图象在. A.第一、二象限B. 第三、四象限 C. 第一、三象限D. 第二、四象限6反比例函数y=-x10的图象不经过. A 第一、二象限B. 第三、四象限 C. 第一、三象限D. 第二、四象限7若抛物线的解析式为y=2(x-3)2+2,则它的顶点坐标是. A.(-3,2) B.(-3,-2) C.(3,2) D.(3,-2) 8一次函数y=-x+1 的图象在. A第一、二、

22、三象限B. 第一、三、四象限C. 第一、二、四象限D. 第二、三、四象限9一次函数y=-2x+1 的图象经过. A第一、二、三象限B.第二、三、四象限C.第一、三、四象限D.第一、二、四象限10. 已知抛物线y=ax2+bx+c (a0 且 a、 b、 c 为常数)的对称轴为x=1, 且函数图象上有三点A(-1,y1)、 B(21,y2)、C(2,y3),则 y1、y2、y3的大小关系是. A.y3y1y2B. y2y3y1C. y3y2y1D. y1y30,化简二次根式2xyx的正确结果为 . A.yB.yC.-yD.-y2.化简二次根式21aaa的结果是. A.1aB.-1aC.1aD.1

23、a3.若 ab,化简二次根式aba的结果是 . A.abB.-abC.abD.-ab4.若 ab,化简二次根式ababaa2)(的结果是. 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 8 页,共 38 页9 A.aB.-aC. aD.a5. 化简二次根式23)1(xx的结果是. A.xxx1B.xxx1C.xxx1D.1xxx6若 ab,化简二次根式ababaa2)(的结果是. A.aB.-aC. aD.a7已知 xy0,则yx2化简后的结果是. A.yxB.-yxC.yxD.yx8若 aa,化简二次根式a2ab的结果是. A.abaB.aba

24、C.abaD.aba10化简二次根式21aaa的结果是. A.1aB.-1aC.1aD.1a11若 ab-23B.k-23且 k3 C.k23且 k3 知识点 24:求点的坐标1已知点P 的坐标为 (2,2),PQ x 轴,且 PQ=2,则 Q 点的坐标是. A.(4,2) B.(0,2)或(4,2) C.(0,2) D.(2,0)或(2,4) 2如果点P 到 x 轴的距离为3,到 y 轴的距离为4,且点 P 在第四象限内,则 P 点的坐标为. A.(3,-4) B.(-3,4) C.4,-3) D.(-4,3) 3 过点 P(1,-2)作 x 轴的平行线l1,过点 Q(-4,3) 作 y 轴

25、的平行线l2, l1、 l2相交于点 A, 则点 A 的坐标是. A.(1,3) B.(-4,-2) C.(3,1) D.(-2,-4) 知识点 25:基本函数图像与性质1 若点 A(-1,y1)、 B(-41,y2)、 C(21,y3)在反比例函数y=xk(k0) 的图象上,则下列各式中不正确的是. A.y3y1y2B.y2+y30 C.y1+y30 D.y1?y3?y20 2在反比例函数 y=xm63的图象上有两点 A(x1,y1)、B(x2,y2),若 x20 x1 ,y12 B.m2 C.m0 3已知 :如图 ,过原点O 的直线交反比例函数y=x2的图象于A、B 两点 ,AC x 轴,

26、AD y 轴, ABC 的面积为 S,则. A.S=2 B.2S4 4已知点 (x1,y1)、(x2,y2)在反比例函数 y=-x2的图象上 , 下列的说法中: 图象在第二、四象限; y 随 x 的增大而增大;当 0 x1x2时 , y1y2;点(-x1,-y1) 、(-x2,-y2)也一定在此反比 例函数的图象上,其中正确的有个. A.1 个B.2 个C.3 个D.4 个5若反比例函数xky的图象与直线y=-x+2 有两个不同的交点A、B,且 AOB1 B. k1 C. 0k1 D. k0 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 10 页

27、,共 38 页11 6若点 (m,m1)是反比例函数xnny122的图象上一点,则此函数图象与直线y=-x+b (|b|2)的交点的个数为. A.0 B.1 C.2 D.4 7已知直线bkxy与双曲线xky交于 A( x1,y1),B(x2,y2)两点 ,则 x1x2的值. A.与 k 有关,与b 无关B.与 k 无关,与b 有关C.与 k、b 都有关D.与 k、 b 都无关知识点 26:正多边形问题1一幅美丽的图案,在某个顶点处由四个边长相等的正多边形镶嵌而成,其中的三个分别为正三边形、正四边形、正六边形,那么另个一个为 . A. 正三边形B.正四边形C.正五边形D.正六边形2为了营造舒适的

28、购物环境,某商厦一楼营业大厅准备装修地面.现选用了边长相同的正四边形、正八边形这两种规格的花岗石板料镶嵌地面,则在每一个顶点的周围,正四边形、正八边形板料铺的个数分别是. A.2,1 B.1,2 C.1,3 D.3,1 3选用下列边长相同的两种正多边形材料组合铺设地面,能平整镶嵌的组合方案是. A.正四边形、正六边形B.正六边形、正十二边形C.正四边形、正八边形D.正八边形、正十二边形4用几何图形材料铺设地面、墙面等,可以形成各种美丽的图案.张师傅准备装修客厅,想用同一种正多边形形状的材料铺成平整、无空隙的地面,下面形状的正多边形材料,他不能选用的是. A.正三边形B.正四边形C. 正五边形D

29、.正六边形5我们常见到许多有美丽图案的地面,它们是用某些正多边形形状的材料铺成的,这样的材料能铺成平整、无空隙的地面.某商厦一楼营业大厅准备装修地面.现有正三边形、正四边形、正六边形、正八边形这四种规格的花岗石板料(所有板料边长相同),若从其中选择两种不同板料铺设地面,则共有种不同的设计方案 . A.2 种B.3 种C.4 种D.6 种6用两种不同的正多边形形状的材料装饰地面,它们能铺成平整、无空隙的地面.选用下列边长相同的正多边形板料组合铺设,不能平整镶嵌的组合方案是. A.正三边形、正四边形B.正六边形、正八边形C.正三边形、正六边形D.正四边形、正八边形7用两种正多边形形状的材料有时能铺

30、成平整、无空隙的地面,并且形成美丽的图案,下面形状的正多边形材料,能与正六边形组合镶嵌的是(所有选用的正多边形材料边长都相同). A.正三边形B.正四边形C.正八边形D.正十二边形8用同一种正多边形形状的材料,铺成平整、无空隙的地面,下列正多边形材料,不能选用的是. A.正三边形B.正四边形C.正六边形D.正十二边形9用两种正多边形形状的材料,有时既能铺成平整、无空隙的地面,同时还可以形成各种美丽的图案.下列正多边形材料(所有正多边形材料边长相同),不能和正三角形镶嵌的是. A.正四边形B.正六边形C.正八边形D.正十二边形知识点 27:科学记数法1为了估算柑桔园近三年的收入情况,某柑桔园的管

31、理人员记录了今年柑桔园中某五株柑桔树的柑桔产量,结果如下 (单位 :公斤 ):100,98,108,96,102,101. 这个柑桔园共有柑桔园2000 株,那么根据管理人员记录的数据精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 11 页,共 38 页12 估计该柑桔园近三年的柑桔产量约为公斤 . A.2 105B.6 105C.2.02105D.6.061052为了增强人们的环保意识,某校环保小组的六名同学记录了自己家中一周内丢弃的塑料袋数量,结果如下(单位 :个):25,21,18,19,24,19.武汉市约有200 万个家庭 ,那么根据环保

32、小组提供的数据估计全市一周内共丢弃塑料袋的数量约为. A.4.2108B.4.2107C.4.2106D.4.2 105知识点 28:数据信息题1对某班60 名学生参加毕业考试成绩(成绩均为整数)整理后,画出频率分布直方图,如图所示,则该班学生及格人数为. A. 45 B. 51 C. 54 D. 57 2某校为了了解学生的身体素质情况,对初三(2)班的 50 名学生进行了立定跳远、铅球、 100 米三个项目的测试,每个项目满分为10 分.如图,是将该班学生所得的三项成绩(成绩均为整数)之和进行整理后,分成5 组画出的频率分布直方图,已知从左到右前4 个小组频率分别为0.02,0.1,0.12

33、,0.46.下列说法:学生的成绩27 分的共有15 人;学生成绩的众数在第四小组(22.526.5)内;学生成绩的中位数在第四小组(22.526.5)范围内 . 其中正确的说法是. A.B.C.D.3某学校按年龄组报名参加乒乓球赛,规定“ n 岁年龄组”只允许满 n岁但未满 n+1 岁的学生报名,学生报名情况如直方图所示.下列结论,其中正确的是. A.报名总人数是10 人 ; B.报名人数最多的是“13 岁年龄组 ” ; C.各年龄组中 ,女生报名人数最少的是“8 岁年龄组 ” ; D.报名学生中 ,小于 11 岁的女生与不小于12 岁的男生人数相等. 4某校初三年级举行科技知识竞赛,50 名

34、参赛学生的最后得分(成绩均为整数 )的频率分布直方图如图,从左起第一、二、三、四、五个小长方形的高的比是1: 2:4:2:1,根据图中所给出的信息,下列结论 ,其中正确的有. 本次测试不及格的学生有15 人;69.579.5 这一组的频率为0.4; 若得分在 90 分以上(含 90 分)可获一等奖 , 则获一等奖的学生有 5 人. A B C D 5某校学生参加环保知识竞赛,将参赛学生的成绩(得分取整数)进行整理后分成五组,绘成频率分布直方图如图,图中从左起第一、二、三、四、五个小长方形的高的比是1:3:6:4:2,第五组的频数为6,则成绩在60 分以上 (含 60 分)的同学的人数. A.4

35、3 B.44 C.45 D.48 6对某班60 名学生参加毕业考试成绩(成绩均为整数)整理后,画出频率分布直方图,如图所示,则该班学生及格人数为. A 45 B 51 C 54 D 57 7某班学生一次数学测验成绩(成绩均为整数)进行统计分成 绩频率0.150.050.250.100.3049.5 59.569.5 79.5 89.5 99.5 100分数组距频率10.5 14.518.522.526.530.5组距频率分数59.569.579.589.599.549.5成 绩频率0.150.050.250.100.3049.559.5 69.5 79.589.599.5100女生男生6810

36、121416246810成 绩人 数81216249.559.569.579.589.599.5成绩组距频率49.559.569.5 79.589.5 99.5精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 12 页,共 38 页13 析 ,各分数段人数如图所示,下列结论 ,其中正确的有()该班共有50 人; 49.5 59.5 这一组的频率为0.08; 本次测验分数的中位数在79.589.5 这一组 ; 学生本次测验成绩优秀(80 分以上 )的学生占全班人数的56%.A.B.C.D.8为了增强学生的身体素质,在中考体育中考中取得优异成绩,某校初三

37、 (1)班进行了立定跳远测试,并将成绩整理后, 绘制了频率分布直方图(测试成绩保留一位小数),如图所示, 已知从左到右4 个组的频率分别是0.05,0.15,0.30,0.35,第五 小组的频数为9 , 若规定测试成绩在2 米以上 (含 2 米) 为合格,则下列结论 :其中正确的有个 . 初三 (1)班共有 60 名学生 ; 第五小组的频率为0.15; 该班立定跳远成绩的合格率是80%. A.B.C.D.知识点 29: 增长率问题1今年我市初中毕业生人数约为12.8 万人,比去年增加了9%,预计明年初中毕业生人数将比今年减少9%.下列说法:去年我市初中毕业生人数约为%918.12万人;按预计,

38、明年我市初中毕业生人数将与去年持平;按预计,明年我市初中毕业生人数会比去年多.其中正确的是. A. B. C. D. 2根据湖北省对外贸易局公布的数据:2002 年我省全年对外贸易总额为16.3 亿美元 ,较 2001 年对外贸易总额增加了10%,则 2001 年对外贸易总额为亿美元 . A.%)101(3 .16B.%)101(3.16C. %1013.16D. %1013.163某市前年80000 初中毕业生升入各类高中的人数为44000 人 ,去年升学率增加了10 个百分点 ,如果今年继续按此比例增加,那么今年110000 初中毕业生 ,升入各类高中学生数应为. A.71500 B.82

39、500 C.59400 D.605 4我国政府为解决老百姓看病难的问题,决定下调药品价格.某种药品在2001 年涨价30%后,2003 年降价70%后至 78 元,则这种药品在2001 年涨价前的价格为元. 78 元B.100 元C.156 元D.200 元5某种品牌的电视机若按标价降价10%出售,可获利50 元;若按标价降价20%出售,则亏本50 元,则这种品牌的电视机的进价是元.()A.700 元B.800 元C.850 元D.1000 元6从 1999 年 11 月 1 日起 ,全国储蓄存款开始征收利息税的税率为20%,某人在 2001 年 6 月 1 日存入人民币 10000 元,年利

40、率为2.25%,一年到期后应缴纳利息税是元. A.44 B.45 C.46 D.48 7某商品的价格为a 元,降价10%后,又降价10%,销售量猛增 ,商场决定再提价20%出售,则最后这商品的售价是元. A.a 元B.1.08a 元C.0.96a 元D.0.972a 元8某商品的进价为100元,商场现拟定下列四种调价方案,其中 0nm0;2a+b31;c0 ; 2cba;a21; b1.其中正确的结论是. A.B.C.D.3. 已知:如图所示,抛物线 y=ax2+bx+c的对称轴为 x=-1,则下列结论正确的个数是. abc0 a+b+c0 ca 2cb A.B.C.D.4. 已知二次函数ya

41、x2 bxc 的图象与x 轴交于点( -2,0),( x1,0),且 1x12,与 y 轴的正半轴的交点在点(0,2)的上方 .下列结论:a0.其中正确结论的个数为. A1 个B2 个C3 个D4 个5. 已知 :如图所示 ,抛物线 y=ax2+bx+c 的对称轴为x=-1,且过点 (1,-2),则下列结论正确的个数是. abc0 bca-1 b-1 5a-2b0 A.B.C.D.6. 已知:如图所示,抛物线 y=ax2+bx+c的图象如图所示, 下列结论: a-1;-1a0; a+b+c2; 0bbc B.acb C.ab=c D.a、 b、c 的大小关系不能确定8. 如图,抛物线 y=ax

42、2+bx+c 图象与 x 轴交于 A(x1,0)、B(x2,0)两点 ,则下列结论中: 2a+b0; a0; 0b2-4a-1 0b2-4ac4 ac+1=b A.1 个B.2 个C.3 个D.4 个10. 二次函数y=ax2+bx+c 的图象如图所示,则在下列各不等式中: abc0;(a+c)2-b22a+2c;3a+c1)个“ * ”,每个图形“ *”的总数是S:n=2,S=4 n=3,S=8 n=4,S=12 n=5,S=16 通过观察规律可以推断出:当n=8 时, S= . 4.下面由火柴杆拼出的一列图形中,第n 个图形由n 个正方形组成:*精选学习资料 - - - - - - - -

43、 - 名师归纳总结 - - - - - - -第 20 页,共 38 页21 11111111111233445510a10?ABOPC?APDBCOAC1PC2B2B1B3C3CBn=1 n=2 n=3 n=4 通过观察发现:第n 个图形中,火柴杆有根. 5.已知 P 为 ABC 的边 BC 上一点, ABC 的面积为a,B1、C1分别为 AB 、AC 的中点,则PB1C1的面积为4a,B2、C2分别为 BB1、CC1的中点,则PB2C2的面积为163a,B3、C3分别为 B1B2、C1C2的中点,则PB3C3的面积为647a,按此规律可知:PB5C5的面积为. 6. 如图 ,用火柴棒按平行

44、四边形、等腰梯形间隔方式搭图形. 按照这样的规律搭下去若图形中平行四边形、等腰梯形共11 个,需要根火柴棒 .(平行四边形每边为一根火柴棒,等腰梯形上底 ,两腰为一根火柴棒 ,下底为两根火柴棒 ) 7.如图的三角形数组是我国古代数学家杨辉发现的,称为杨辉三角形.根据图中的数构成的规律可得:图中 a 所表示的数是. 8. 在同一平面内:两条直线相交有12222个交点,三条直线两两相交最多有32332个交点,四条直线两两相交最多有62442个交点,那么 8 条直线两两相交最多有个交点 . 9.观察下列等式: 13+23=32;13+23+33=62;13+23+33+43=102;根据前面各式规律

45、可得:13+23+33+43+53+63+73+83= . 知识点 38:已知结论寻求条件问题1. 如图 , AC 为 O 的直径, PA 是 O 的切线, 切点为 A,PBC 是 O 的割线, BAC的平分线交BC 于 D 点, PF 交 AC 于 F 点,交 AB 于 E 点,要使 AE=AF ,则 PF 应满足的条件是. (只需填一个条件)2.已知 :如图 ,AB 为O 的直径 ,P为 AB 延长线上的一点,PC 切O 于 C,要使得 AC=PC, 则图中的线段应满足的条件是. ?BACDPEOF精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第

46、 21 页,共 38 页22 ?ABCDEO3.已知: 如图,四边形 ABCD 内接于 O,过 A 作O的切线交CB 的延长线于P,若 它 的 边 满 足 条件,则有 ABPCDA. 4.已知 : ABC 中, D 为 BC 上的一点,过A 点的 O 切 BC 于 D 点,交 AB、AC于 E、F 两点,要使BC EF,则 AD 必满足条件 . 5.已知 :如图, AB 为 O 的直径, D 为弧 AC 上一点, DE AB 于 E,DE、DB 分别 交 弦AC于F 、 G两 点 , 要 使 得DE=DG , 则 图 中 的 弧 必 满 足 的 条 件是. 6.已知:如图,RtABC 中,以

47、AB 为直径作 O 交 BC 于 D 点, E 为 AC 上一点,要使得 AE=CE ,请补充条件(填入一个即可 ). 7.已知 :如图 ,圆内接四边形ABCD, 对角线 ACBD 相交于 E 点,要 使得 BC2=CE? CA,则四边形ABCD 的边应满足的条件是 . 8.已知 ,ABC内接于 O,要使BAC 的外角平分线与O 相切,则ABC的边必 满足的条件是 . 9.已知 : 如图, ABC 内接于 O, D 为劣弧AB 上一点, E 是 BC 延长线上一点,AE交 O 于 F, 为使 ADB ACE , 应补充的一个条件是, 或. 10.已知:如图,以ABC 的边 AB 为直径作 O

48、交 BC 于 D,DEAC, E 为垂足,要使得DE为 O的 切 线 , 则 ABC的 边 必 满 足 的 条 件是. 知识点 39:阴影部分面积问题1. 如图 ,梯形 ABCD 中, AD BC, D=90,以 AB 为直径的O 切 CD 于 E 点,交 BC 于 F,若 AB=4cm ,AD=1cm , 则图中阴影部分的面积是cm2.(不用近似值)2.已知:如图,平行四边形 ABCD,AB AC ,AEBC,以 AE 为直径作O,以 A 为圆心, AE 为半径作弧交AB 于 F 点,交 AD 于 G 点,若 BE=2,CE=6,则图中阴影部分的面积为 . 3.已知 :如图 , O1与O2内

49、含,直线O1O2分别交O1和O2于 A、B 和 C、D点,O1的弦 BE切O2于 F 点,若 AC=1cm ,CD=6cm,DB=3cm,则弧 CF、AE 与线段 AC弧、 EF 弧围成的阴影部分的面积是cm2. 4.已知 :如图 ,AB 为O 的直径 ,以 AO、BO为直径作 O1、O2,O的弦 MN 与 O1、O2相切于 C、D 两点,AB=4,则图中阴影部分的面ABCGEODF?O2O1ACDBFE?BMNAO2O1ODC?ABOCDE?ADOFCBEG?DFBAOCE?BDOACE精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 22 页,共

50、 38 页23 ?BO2BO1A积是. 5.已知:如图,等边ABC 内接于 O1,以 AB 为直径作 O2,AB=23,则图中阴影部分的面积为. 6.已知:如图,边长为12 的等边三角形,形内有4 个等圆,则图中阴影部分的面积为. 7.已知:如图,直角梯形ABCD 中, AD BC,AD=AB=23,BC=4 , A=90,以 A 为圆心, AB 为半径作扇形ABD ,以 BC 为直径作半圆,则图中阴影部分的面积为 . 8.已知:如图,ABCD,AB AC,AE BC,以 AE 为直径作 O,以 A 为圆心, AE 为半径作弧交AB 于 F 点,交AD 于 G 点,若BE=6,CE=2,则图中

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 技术总结

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁