《2022年初中数学八年级重点.docx》由会员分享,可在线阅读,更多相关《2022年初中数学八年级重点.docx(14页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2022年初中数学八年级重点 八年级的数学是承上启下的一个年级,所以重点学问有许多,我整理了相关资料,希望能帮助到您。 第一章 勾股定理 1、勾股定理 直角三角形两直角边a,b的平方和等于斜边c的平方,即a2+b2=c2。 2、勾股定理的逆定理 假如三角形的三边长a,b,c有这种关系,那么这个三角形是直角三角形。 3、勾股数 满意的三个正整数,称为勾股数。 常见的勾股数组有:(3,4,5);(5,12,13);(8,15,17);(7,24,25);(20,21,29);(9,40,41);(这些勾股数组的倍数仍是勾股数) 其次章 实数 1、实数的概念及分类 实数的分类 无理数 无限不循环小数
2、叫做无理数。 在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类: 开方开不尽的数,如 √7 ,3 √2等; 有特定意义的数,如圆周率π,或化简后含有π的数,如π /₃+8等; 有特定结构的数,如0.1010010001等; 某些三角函数值,如sin60°等 2、实数的倒数、相反数和肯定值 相反数 实数与它的相反数是一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,假如a与b互为相反数,则有a+b=0,a=-b,反之亦成立。 肯定值 在数轴上,一个数所对应的
3、点与原点的距离,叫做该数的肯定值。|a|≥0。0的肯定值是它本身,也可看成它的相反数,若|a|=a,则a≥0;若|a|=-a,则a≤0。 倒数 假如a与b互为倒数,则有ab=1,反之亦成立。倒数等于本身的数是1和-1。0没有倒数。 数轴 规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要留意上述规定的三要素缺一不行)。 解题时要真正驾驭数形结合的思想,理解实数与数轴的点是一一对应的,并能敏捷运用。 估算 3、平方根、算数平方根和立方根 算术平方根 一般地,假如一个正数x的平方等于a,即x2=a,那么这个正数x就叫做a的算术平方根。特殊地,0的算术平方根是0。 性质:正数
4、和零的算术平方根都只有一个,0的算术平方根是0。 平方根 一般地,假如一个数x的平方等于a,即x2=a,那么这个数x就叫做a的平方根(或二次方根)。 性质:一个正数有两个平方根,它们互为相反数;零的平方根是零;负数没有平方根。 开平方求一个数a的平方根的运算,叫做开平方。留意 √a的双重非负性:√a≥0 ; a≥0 立方根 一般地,假如一个数x的立方等于a,即x3=a,那么这个数x就叫做a 的立方根(或三次方根)。 表示方法:记作 3 √a 性质:一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。 留意:- 3 √a
5、=3 √-a,这说明三次根号内的负号可以移到根号外面。 4、实数大小的比较 实数比较大小 正数大于零,负数小于零,正数大于一切负数; 数轴上的两个点所表示的数,右边的总比左边的大; 两个负数,肯定值大的反而小。 实数大小比较的几种常用方法 数轴比较:在数轴上表示的两个数,右边的数总比左边的数大。 求差比较:设a、b是实数 a-b0↔ab; a-b=0↔a=b; a-b0↔a 求商比较法:设a、b是两正实数, 肯定值比较法:设a、b是两负实数,则ab↔a 平方法:设a、b是两负实数,则 a2b2↔a 5、算术平方根有关计算(二次根式)
6、 含有二次根号“ √ ”;被开方数a必需是非负数。 性质: 运算结果若含有“ √ ”形式,必需满意: 被开方数的因数是整数,因式是整式 被开方数中不含能开得尽方的因数或因式 6、实数的运算 六种运算:加、减、乘、除、乘方 、开方。 实数的运算依次 先算乘方和开方,再算乘除,最终算加减,假如有括号,就先算括号里面的。 运算律 加法交换律 a+b= b+a 加法结合律 (a+b)+c= a+( b+c ) 乘法交换律 ab= ba 乘法结合律 (ab)c = a( bc ) 乘法对加法的安排律 a( b+c )=ab+ac 第三章 位置与坐标 1、确定位置 在平面内,确定物
7、体的位置一般须要两个数据。 2、平面直角坐标系及有关概念 平面直角坐标系 在平面内,两条相互垂直且有公共原点的数轴,组成平面直角坐标系。其中,水平的数轴叫做x轴或横轴,取向右为正方向;铅直的数轴叫做y轴或纵轴,取向上为正方向;x轴和y轴统称坐标轴。它们的公共原点O称为直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。 坐标轴和象限 为了便于描述坐标平面内点的位置,把坐标平面被x轴和y轴分割而成的四个部分,分别叫做第一象限、其次象限、第三象限、第四象限。 留意:x轴和y轴上的点(坐标轴上的点),不属于任何一个象限。 点的坐标的概念 对于平面内随意一点P,过点P分别x轴、y轴向作垂线,垂足在
8、上x轴、y轴对应的数a,b分别叫做点P的横坐标、纵坐标,有序数对(a,b)叫做点P的坐标。 点的坐标用(a,b)表示,其依次是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒。平面内点的坐标是有序实数对,(a,b)和(b,a)是两个不同点的坐标。 平面内点的与有序实数对是一一对应的。 不同位置的点的坐标的特征 a、各象限内点的坐标的特征 点P(x,y)在第一象限→ x0,y0 点P(x,y)在其次象限 → x0,y0 点P(x,y)在第三象限 → x0,y0 点P(x,y)在第四象限 → x0,y0 b、坐标轴上的点的特征 点P(x,y
9、)在x轴上 → y=0,x为随意实数 点P(x,y)在y轴上 → x=0,y为随意实数 点P(x,y)既在x轴上,又在y轴上→ x,y同时为零,即点P坐标为(0,0)即原点 c、两条坐标轴夹角平分线上点的坐标的特征 点P(x,y)在第一、三象限夹角平分线(直线y=x)上 → x与y相等 点P(x,y)在其次、四象限夹角平分线上 → x与y互为相反数 d、和坐标轴平行的直线上点的坐标的特征 位于平行于x轴的直线上的各点的纵坐标相同。 位于平行于y轴的直线上的各点的横坐标相同。 e、关于x轴、y轴或原点对称的点的坐标的特征 点P与点p’
10、关于x轴对称 横坐标相等,纵坐标互为相反数,即点P(x,y)关于x轴的对称点为P’(x,-y) 点P与点p’关于y轴对称 纵坐标相等,横坐标互为相反数,即点P(x,y)关于y轴的对称点为P’(-x,y) 点P与点p’关于原点对称,横、纵坐标均互为相反数,即点P(x,y)关于原点的对称点为P’(-x,-y) f、点到坐标轴及原点的距离 点P(x,y)到坐标轴及原点的距离: 点P(x,y)到x轴的距离等于 y 点P(x,y)到y轴的距离等于 x 点P(x,y)到原点的距离等于 √x2+y2 3、坐标改变与图形改变的规律 第四章
11、 一次函数 1、函数 一般地,在某一改变过程中有两个变量x与y,假如给定一个x值,相应地就确定了一个y值,那么我们称y是x的函数,其中x是自变量,y是因变量。 2、自变量取值范围 使函数有意义的自变量的取值的全体,叫做自变量的取值范围。一般从整式(取全体实数),分式(分母不为0)、二次根式(被开方数为非负数)、实际意义几方面考虑。 3、函数的三种表示法及其优缺点 关系式(解析)法 两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做关系式(解析)法。 列表法 把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。 图象法 用图
12、象表示函数关系的方法叫做图象法。 4、由函数关系式画其图像的一般步骤 列表:列表给出自变量与函数的一些对应值。 描点:以表中每对对应值为坐标,在坐标平面内描出相应的点。 连线:根据自变量由小到大的依次,把所描各点用平滑的曲线连接起来。 5、正比例函数和一次函数 正比例函数和一次函数的概念 一般地,若两个变量x,y间的关系可以表示成y=kx+b (k,b为常数,k不等于 0)的形式,则称y是x的一次函数(x为自变量,y为因变量)。 特殊地,当一次函数y=kx+b中的b=0时(k为常数,k 不等于0),称y是x的正比例函数。 一次函数的图像: 全部一次函数的图像都是一条直线。 一次函数、正比例函数
13、图像的主要特征 一次函数y=kx+b的图像是经过点(0,b)的直线; 正比例函数y=kx的图像是经过原点(0,0)的直线。 正比例函数的性质 一般地,正比例函数 有下列性质: 当k0时,图像经过第一、三象限,y随x的增大而增大; 当k0时,图像经过其次、四象限,y随x的增大而减小。 一次函数的性质 一般地,一次函数 有下列性质: 当k0时,y随x的增大而增大; 当k0时,y随x的增大而减小。 正比例函数和一次函数解析式的确定 确定一个正比例函数,就是要确定正比例函数定义式y=kx(k 不等于0)中的常数k。 确定一个一次函数,须要确定一次函数定义式y=kx+b(k 不等于0)中的常数k和b。解
14、这类问题的一般方法是待定系数法. 一次函数与一元一次方程的关系 任何一个一元一次方程都可转化为:kx+b=0(k、b为常数,k≠0)的形式.而一次函数解析式形式正是y=kx+b(k、b为常数,k≠0).当函数值为0时,即kx+b=0就与一元一次方程完全相同. 结论:由于任何一元一次方程都可转化为kx+b=0(k、b为常数,k≠0)的形式.所以解一元一次方程可以转化为:当一次函数值为0时,求相应的自变量的值. 从图象上看,这相当于已知直线y=kx+b确定它与x轴交点的横坐标值. 第五章 二元一次方程组 1、二元一次方程 二元一次方程 含有两个未知数,并且所含未知数的项的次数都是
15、1的整式方程叫做二元一次方程。 二元一次方程的解 适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。 2、二元一次方程组 含有两个未知数的两个一次方程所组成的一组方程,叫做二元一次方程组。 二元一次方程组的解 二元一次方程组中各个方程的公共解,叫做这个二元一次方程组的解。 二元一次方程组的解法 代入(消元)法 加减(消元)法 一次函数与二元一次方程(组)的关系: 一次函数与二元一次方程的关系: 直线y=kx+b上随意一点的坐标都是它所对应的二元一次方程kx- y+b=0的解 一次函数与二元一次方程组的关系: 二元一次方程组 的解可看作两个一次函数 和 的图象的交点。 当函数图
16、象有交点时,说明相应的二元一次方程组有解; 当函数图象(直线)平行即无交点时,说明相应的二元一次方程组无解。 第六章 数据的分析 1、刻画数据的集中趋势(平均水平)的量:平均数 、众数、中位数 2、平均数 平均数:一般地,对于n个数,我们把它们的和与n之商叫做这n个数的算术平均数,简称平均数。 加权平均数。 3、众数 一组数据中出现次数最多的那个数据叫做这组数据的众数。 4、中位数 一般地,将一组数据按大小依次排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数。 第七章 平行线的证明 1、平行线的性质 一般地,假如两条线相互平行的直线被第三条直线所截,那么同位角相等
17、,内错角相等,同旁内角互补. 也可以简洁的说成: 两直线平行,同位角相等; 两直线平行,内错角相等; 两直线平行,同旁内角互补。 2、判定平行线 两条直线被第三条直线所截,假如同位角相等,那么这两条直线平行. 也可以简洁说成: 同位角相等两直线平行 两条直线被第三条直线所截,假如同位角相等,那么这两条直线平行;假如同旁内角互补,那么这两条直线平行. 其他两条可以简洁说成: 内错角相等两直线平行 同旁内角相等两直线平行 初中数学八年级重点第14页 共14页第 14 页 共 14 页第 14 页 共 14 页第 14 页 共 14 页第 14 页 共 14 页第 14 页 共 14 页第 14 页 共 14 页第 14 页 共 14 页第 14 页 共 14 页第 14 页 共 14 页第 14 页 共 14 页